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Abstract

In this paper, we present a new numerical method to solve fractional differential equations.
Given a fractional derivative of arbitrary real order, we present an approximation formula for
the fractional operator that involves integer-order derivatives only. With this, we can rewrite
FDEs in terms of a classical one and then apply any known technique. With some examples,
we show the accuracy of the method.
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1 Introduction

Since the beginning of differential calculus, the question of what could be a derivative of non-
integer order was pertinent and Leibniz himself wondered about the derivative of order aw = 1/2.
Liouville carried out a serious investigation on the subject, and presented a notion of fractional
integrator operator. Later, starting with Cauchy’s formula for an n-fold integral, Riemann defined
a fractional integration as it is known today, and become a basis for the fractional calculus theory.
A different type of fractional operators have appeared in 1967 [6], due to Michel Caputo, and as
proven to be applicable in many situations. It reveals two advantages: the derivative of a constant
is zero and, when solving fractional differential equations involving this operator, it is not necessary
to define fractional order initial conditions and we may consider ordinary ones. In the last years,
FDEs have revealed to model better some real phenomena, since these fractional operators contain
memory and from experimental data, some dynamics of trajectories are modeled by non-integer
order derivatives. Because of this, they have found numerous applications in various research areas
and engineering applications (viscoelasticity, viscoplasticity, modeling polymers, transmission of
ultrasound waves, etc) [I}4]7HT0LT3L 17 20,26,27]. However, there is no effective and easy-to-use
method to solve such differential equations. For this reason, we find in the literature a vast number
of numerical methods in order to be able to solve them [51[11}12LT51T8,[T9L22].

We begin in Section [2] with a short introduction to fractional calculus, as presented in e.g.
14,16, 2T, 23]. In Section Bl we present and prove the main result of the paper: under some
smoothness assumptions, we can approximate a fractional derivative of arbitrary real order by a
sum that involves integer-order derivatives only. An estimation for the error is also given. With
this, we extend the main results of [2,[3124], by considering fractional derivatives of arbitrary



real order. In Section M, we present some examples; first we test the efficiency of the method,
by comparing the exact expression of the Caputo fractional derivative of a given function with
some numerical approximations. At the end, we exemplify how it can be useful to solve fractional
differential equations.

2 Preliminaries

Let us review some necessary definitions on fractional calculus. Let « : [a,b] — R be a function, «
a positive non-integer number and n € N be such that o € (n — 1,n). In what follows, we assume
that x is sufficiently good in order to the fractional operators be well defined. The left and right
Riemann—Liouville fractional integrals of order « is a generalization of the Cauchy’s formula to
arbitrary real numbers, and are defined as

1

aIta.’I](t) = m

/ (t — 1) ta(r)dr,
and .
0w (t) = ﬁ /t (1 — )9 1a(r)dr,

respectively. For fractional derivatives, we consider two types of operators. The left and right
Riemann-Liouville fractional derivatives are given by
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respectively. The left and right Caputo fractional derivatives are given by
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respectively. There exists a relation between these two fractional derivatives, to know:

n—1 :v(k) (a)

o Dia(t) = oDfa(t) — (t—a), (1)

= N'k—a+1)
and .
= (k)
C na _ «a _ £ (b) _ \k—«a
Therefore, if
z(a) =a'(a) = ... = 2" V(a) =0 = CDXx(t) = .DYu(t),
and if
D) =2' D) =...=z""V0) =0 = Dgx(t) =  Dyx(t).

Although in this paper we deal with the Caputo fractional derivatives, using relations () and
@), similar formulas can be deduced for the Riemann-Liouville fractional derivatives.
Immediate calculations lead to the following. For the power functions

x(t) = (t — a)ﬁfl and y(t) = (b— t)ﬁfl,



with 8 > n, we have

I'(8)

CDpa(t) = m(t —a)Pm !,
and
Cpoy) = LB ps-a-1

If x € C™[a,b], then the Caputo fractional derivatives ¢ D¢z (t) and § Dgx(t) exist and are con-
tinuous on [a, b]. Moreover, { D¢z (t) = 0 at t = a, and {Dgx(t) = 0 at t = b. Also, the Caputo
fractional differentiation and the Riemann-Liouville fractional integration can be seen as inverse
operations of each other. In fact, if z € Cla, ], then

o Df oI a(t) = 7Dy I a(t) = a(t),

and if z € C"[a, b], then

oI ODfa(t) = alt) - 30 Tt - o),

and
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3 Theoretical results

In the following, we use the extension of the binomial formula to real numbers:
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Theorem 1. Let m € NU{0}, N> N >m+1 and x : [a,b] — R be a function of class C" ™+,
Define

N

1 IF'(p+a—n—m)
A = 1 fork € {0,1,...
FTT+k+1-0) +p_mZ:k+1I‘(a—n—k)(p—m+k)! , fork€{0,1,...,m},

Mk+a—n—m)
I'n—a)ll(a+1—n)(k—m—1)"

By = forke {m+1,m+2,... N},
¢
Vi (t) :/ (1 —a)* 2™ (1)dr, fork e {0,1,....,N —m —1},t € [a,b].

Then, the following holds:

m N
CDfa(t) =Y Ap(t—a)" ™ot @) 4 3" Byt —a)" TPV () + En(t),
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with
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Proof. Starting with the formula
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and integrating by parts with v’ = (¢t — 7 and v = z(") (1), we get

(n) t
C na xz (CL) n—o 1 / n—a,.(n+1)
Dizx(t) = —————(t — _ t— dr.
EDalt) = Foy g ) e [, )
Repeating this process m more times, obtain the formula
s (n+k) t
C na xz (a’) n+k—o 1 / n+m—a . (n+m+1)
Diz(t) = t— t— dr.
a Di(t) kZ:OF(n—i-k—l—l—oz)( @) +F(n+m+1—o¢) a( ™) * (r)dr

Using the Taylor’s expansion, we obtain the next sum

N PV
= (t a)n-i—m a Z (nJr;Cnfoc) (_l)k (T - + EN(t, T),
k=0 (t - )
where ~ )
EN(t, T)=(t— a)ner*O‘ Z (n+;n—o¢) (_l)k (r = a)k '
E=N-+1 (t—a)
Then,
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where
1 - (n+m+1) d
EN(t)_F(n—I—m—l-l—Oz)/a EN(t,T)LL' (T) T.

If we split the sum into £ = 0 and the remaining terms &k = 1,..., N, and integrating by parts
with u = (7 — a)* and v/ = "™V (1) we get

m—1 n—i—k)( )

C na _ n+k—a _ n+m—a . (n+m)
o Dix E t + A, (t t
kofn—l—k—i—l—a)( @) (t—a) * ®)
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+ Tlatl—n—mk-D(—a

t r—a)F gt dr .
P(n+m—a) & )kq/a( ) (T)dT + En(t)

Repeating the procedure m more times, we obtain

N
CDa ZAk t— a)n-‘rk o (n-Hc)( ) + Z Bk(t _ a)n-‘rm—k—avk_m_l(t) + EN(t).
k=0 k=m+1

Now we get the upper bound formula for the error En(t). Using the following relations:

Z:Z <1, Vrelat],
and
- n+m—ao k ~ exp((n +m — CY)2 +n+m— CY)
Z ‘( k ) (_1) ‘ < Z fentmA41l—a
k=N 41 k=N+1
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— N kn+m+1fa - Nnerfa(n +m — Oé) )
the formula is deduced. O



We stress out that for all ¢ € [a,b], En(t) goes to zero as N goes to oco. Also, using Eq.
(@D, a similar formula can be deduced for the left Riemann-Liouville fractional derivative. An
approximation formula for the right Caputo fractional derivative is straightforward.

Theorem 2. Let m € NU{0}, N> N >m+ 1 and x : [a,b] — R be a function of class C" ™+,
Define

_ (1) t* a I'(p+a—n—m)
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Then, the following holds:

m N
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with
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Remark 1. Other methods exist in the literature to solve higher-order fractional problems. The
most common procedure is to discretize the fractional operator, while our method allows us to
rewrite the fractional problem into an ordinary one, and after it we can choose any available
technique known in the literature to solve it. For a reference on a numerical method to approximate
the fractional derivative of higher-order, we mention [25] and is the following. Let « be such that
l<a<?2andx:[a,b] = R be a function of class C2. Consider the mesh points defined by

ti=a+jAt, j=0,1.,N
where At denotes the uniform space step. So, the approximation is the following:

—a J—1
EDFalty) ~ 13— 3 e e 1112) = 20 fs) 0 (00 3)

where
dig =0 —k)* = (G -k-17"
4 Numerical examples

We exemplify in this section the purposed formula. All the required computations are executed
in Matlab, using a grid on time x1,...,xg. The error that appears in such approximations is
measured by the L? norm:

N | =

G
Blx,y) = (Zm - y>> . (4)

i=1

For simplicity, we will consider always G = 100.



Example 1. We compare the Caputo fractional derivative of z(t) = t® and y(t) = (1 — )5,
t € [0, 1], with fractional orders a = 1.5 and 8 = 2.5. The exact expressions are given by

6' [ 6' 3
C nl.5 4.5 C 2.5 3.5
D t) = ———t D t) = ———t
o D (t) r(5'.5) ’ o Di7a(®) 1“(4'.5) ’
6! 6!
C nl.5 4.5 C 2.5 3.5
D 1) = ——=([1 -1 D t) = ———(1—1)"".

For the numerical approximation given by Theorem [l we consider two distinct cases. First, we
fix m = 1 and take N € {10, 15,25,50} (Figure [Il); then, we fix N = 50 and take m € {1,2,3}
(Figure 2).

As expected, as N increases, we obtain a better approximation for the fractional derivative.
From FigurePlwe can see that, even for a small value of m, we already obtain a good approximation
for each function.
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Figure 1: For m = 1: analytic vs. numerical approximation.

Remark 2. We now compare our approximation given by Theorem[Ilwith the one given by equation
@). Again, let z(t) = t¢ with ¢ € [0, 1], and for the order of the fractional derivative, we consider
a = 1.5. The result obtained is shown in Figure ] taking At = 1/100.

For our next two examples, we use the MatLab built-in ODE solver ode45.
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Figure 2: For N = 50: analytic vs. numerical approximation.
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Figure 3: For At = 1/100: analytic vs. numerical approximation for thl‘5x(t).

Example 2. Consider a fractional differential equation

§D}x(t) + a(t) = —P(i!.s‘))
1(0) =Y

2’'(0) =0,

2"(0) = 0. 7

t3A5 + tG,

t€0,1],



The obvious solution is x(t) = t5. The idea is to re-write this fractional problem as a system
of ordinary differential equations depending only on integer-order derivatives, and after we can
apply any numerical tool available to solve it. Since we have three initial conditions, we replace
the fractional operator ng'5x(t) by the expansion given in Theorem [ taking m = 0, i.e.,

N
gD?S,T(t) ~ A0t0'5$(3) (t) + ZBktO.'{)—ka_l(t)

k=1
with
! 2 T(p—0.5)
— I'(k—0.5) -
b= '0.5)(-0.5)(k — 1)V k=1,...,N,

N |
Agt®223) (1) + kzl Bit®> RV 1 (t) + x(t) = - (i'_5)t3-5 +1%, telo,1],
Vi) =tFx®)(t), k=0,...,N—1, tel0,1],
x(0) =0,
2/(0) =0,
2" (0) = 0,
Vi(0)=0, k=0,...,N—1.

The result is shown in Figure[dl We can see that, as N increases, our numerical approximation
becomes closer to the exact solution.
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Figure 4: Example 2: analytic vs. numerical approximation.

Example 3. Consider a fractional coupled mass-spring-damper system with mass value m (in
keg), modeled by a fractional differential equation of order o € (1,2), for the displacement from
the equilibrium position, x(t),

m§ Dia(t) +ya'(t) + ka(t) = f(2),



with mass initial displacement (0) and initial velocity 2’ (0) given, ~ is the damping coefficient (in
N-s/m), k the spring constant (in N/m) and f is an external force. For simplicity, we will consider
m=v=k=1,2(0)=0,2(0) =1, «a = 1.9 and f(¢t) = cos(t). Thus, the system becomes

§DF0x(t) + 2/ (t) + x(t) = cos(t),
z(0) =0, (5)
2/(0) = 1.

The exact solution for this problem is not known. To solve it numerically, we replace § D} (t)
by the expansion given in Theorem [l If we consider m = 0, we obtain the approximated system:

N
At®ta (1) + ' (8) + () + D Brt®™! Vi (8) = cos(t),

k=1
Vi) =tFa"(t), k=0,...,N—1, (6)
x(0) =0,
2(0) =1,
Vie0) =0, k=0,...,N—1,
with
1 XN: T'(p—0 1)]
A= —— |14
T(1.1) Z T(=0.1)p!
and 'k—0.1
B, — (k—0.1)

T T T
— — — Approximate, N=7
Approximate, N=8
Approximate, N=49
Approximate, N=50

0.8

Figure 5: Example 3: analytic vs. numerical approximation.

Let gy be the solution of system (B]). Because the exact solution of system (B) is not known,
we will use as a measure of accuracy, two obtained approximations gy_1 and gy:

N =

G
E(gn-1,9n) = <Z(9N1(ti) - gN(ti))2>

i=1

In Table[Ilwe show some calculated values for different values of N. We remark that as N increases,
the value decreases.



N E(nglv gN)
8 | 0.054485696738145
50 | 0.001770846453709

Table 1: Values for E(gn_1, gn).

5 Conclusion

Fractional differential equations have proven to describe better certain dynamics of real world
phenomena, and have called the attention of a vast community of researchers. The drawback is
that it is very difficult to deal with them analytically, and so often numerical methods are used to
solve the problems. We already find a large number of available methods when the order of the
fractional derivative is in the interval (0, 1), but is not so common for higher-order derivatives. In
this paper we present a general method that can be used to solve fractional differential equations
of arbitrary order, by translating the problem into a classical one, depending only on integer-
order derivatives. Here, after replacing the fractional operator by the purposed approximation, we
solve the problems by discretizing the ordinary differential equations and getting a finite difference
equations, and then solve using software Matlab.
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