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This conference is entitled ”Similarity and Dissimilarity in Computational

Biology” in allusion to XU Guangqi (1562-1633) treatise on ”Similarity

and Dissimilarity in Measurement” and to mark the 400th anniversary of

the publication of his translation of Euclid’s ”Elements of Geometry”.

The abstraction of measurment, in terms of mathematical notions distance,

similarity, metric, etc. was originated by M.Fréchet (1906) and F.Hausdorff

(1914). But the triangle inequality, crucial in it, should be already known

to XU Guangqi since it appears in Euclid’s ”Elements of Geometry”.

Given a set X , a distance (or dissimilarity) on it is a function

d : X × X → R≥0 with all d(x, x) = 0 and d(x, y)=d(y, x) (symmetry).

A similarity is a symmetric function s : X × X → R≥0 such that

s(x, y) ≤ s(x, x) holds for all x, y ∈ X with equality if and only if x = y.

A metric is a symmetric function d : X × X → R≥0 with d(x, y) = 0 iff

x = y and triangle inequality (d(x, y) ≤ d(x, z) + d(z, y) if x, y, z ∈ X).
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Metric space (a set X with a metric d defined on it: (X, d)) started

century ago as a special case of an infinite topological space.

However, from K.Menger (1928) and L.M.Blumenthal (1953), an explosion

of interest in both, finite and infinite metric spaces, occurred.

By now, theories involving distances and similarities florished in many areas

of Mathematics including Geometry, Probability, Coding/Graph Theory.

Many mathematical theories, in the process of their generalization, settled

down on the level of metric space. It is ongoing process in Riemannian

Geometry, Real Analysis, Approximation Theory.

On the other hand, devising most suitable distances/similarities became an

essential task in many applications incl. Pattern Recognition, Networks,

Astronomy/Cosmology, and esp. Computational Biology, Image/Audio

Analisys, Information Retrieval. But Biology still lags behind last two in

using, besides distances themselves, powerful distance-related notions and

paradigms: transforms, various numerical invariants, etc.
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METRIC REPAIRS

Let X be a set. A function d : X × X → R≥0 with all d(x, x) = 0 is called a

quasi-distance (or, in Topology, prametric) on X .

A quasi-distance is a distance if d(x, y) = d(y, x) and

semi-metric (or, in Topology, pseudo-metric) if, moreover, it holds

d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality) for all x, y, z ∈ X .

A quasi-distance is a quasi-metric if d(x, y) > 0 for all x 6= y and triangle

inequality holds.

A metric is both, semi- and quasi-metric.

Main transforms used to obtain a distance d ≤ 1 from a similarity s are:

d = arccos s, d − ln s, d = 1 − s, d = 1−s
s , d =

√
1 − s,
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For a distance d, the function, defined by D(x, x) = 0 and, for x 6= y by

D1(x, y) = d(x, y) + maxx,y,z∈X(d(x, y) − d(x, z) − d(y, z)) is a semi-metric.

Also, D2(x, y) = d(x, y)c is a semi-metric for sufficiently small c ≥ 0. The

function D3(x, y) = inf
∑

i d(zi, zi+1), where the infimum is taken over all

sequences x = z0, . . . , zn+1 = y, is also a semi-metric.

For a semi-metric d on X, define equivalence relation by x ∼ y if

d(x, y) = 0; let [x] be the equivalence class containing x. Then

D([x], [y]) = d(x, y) is a metric on the set {[x] : x ∈ X} of eqv. classes.

For a quasi-metric d, functions max{d(x, y), d(y, x)}, min{d(x, y), d(y, x)}
and d(x,y)+d(y,x)

2 are metrics.

For a metric d, the function D(x, y) = d(x,y)
1+d(x,y) < 1, is a 1-bounded metric.
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1. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality), i.e., a metric;

2. d(x, y)d(u, z) ≤ d(x, u)d(y, z) + d(x, z)d(y, u), a Ptolemaic metric;

3. d(x, y) + d(z, u) ≤ max(d(x, z) + d(y, u), d(x, u) + d(y, z)) (4-point

inequality), a R>0-edge-weighted tree metric (it is 2, 5, 7);

4. d(x, y) ≤ max(d(x, z), d(z, y)), an ultrametric (it is 3);

5. d(x, y) + d(z, u) ≤ 2δ + max{d(x, z) + d(y, u), d(x, u) + d(y, z)} for δ ≥ 0,

a δ-hyperbolic metric;

6. d(x, y) ≤ d(x, z) + d(y, z) − d(x, z)d(z, y) (equivalent to

(1 − d(x, y)) ≥ (1 − d(x, z))(1 − d(z, y))), a P -metric;

7.
∑

1≤i<j≤n bibjd(xi, xj) ≤ 0 for b ∈ Zn,
∑n

i=1 bi = 1, a hypermetric;

8. d(x, y) ≤ C(d(x, z) + d(z, y)) for a constant C ≥ 1, a near-metric;

9. d(x, y) ≤ d(x, z) + d(z, y) − d(z, z) for 0 ≤ d(z, z) ≤ infu d(z, u), i.e.,

self-distances are small, a partial metric.
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A 2-metric is function d : X ×X ×X → R≥0 which is totally symmetric

(i.e., d(x1, x2, x3) is unchanged by any permutation of arguments),

zero conditioned (i.e., d(x1, x2, x3) = 0 iff xi = xj for some 1 ≤ i < j ≤ 3)

and satisfy tetrahedron inequality

d(x1, x2, x3) ≤ d(x4, x2, x3) + d(x1, x4, x3) + d(x1, x2, x4).

A m-metric (or m-volume) is defined by m-simplex inequality. The

cases m = 1, 2 correspond to usual metric (length) and area, respectively.

A proximity space is a set X with a proximity, i.e., symmetric binary

relation δ on the power set P (X) (of all its subsets) with AδA iff A 6= ∅
and Aδ(B ∪ C) if and only if AδB or AδC (additivity).

Every metric space (X, d) is a proximity space: define AδB iff

d(A, B) = infx∈A,y∈B d(x, y) = 0.
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Consider a set X and a map cl : P (X) → P (X) with cl(∅) = ∅. The maps

cl(A) (for A ⊂ X), its dual int(A) = X\cl(X\A) and N : X → P (X) with

N(x) = {A ⊂ X : x ∈ int(A)} are called closure, interior and

neighborhood map, resp. A subset A ⊂ X is closed if A = cl(A) and

open if A = int(A). Consider the following possible properties of (X, cl):

1. A ⊆ B implies cl(A) ⊆ cl(B) (isotony);

2. A ⊆ cl(A)(enlarging);

3. cl(A ∪ B) = cl(A) ∪ cl(B) (linearity, and, in fact, 3. implies 1.);

4. cl(cl(A)) = cl(A) (idempotency).

The pair (X, cl) is called extended topology if 1. hold, Brissaud space

(Brissaud, 1974) if 2. hold, neighborhood space (Hammer, 1964) if 1., 2.

hold, Smyth space (Smyth, 1995) if 3. hold, pretopology (Čech, 1966) if

2., 3. hold, and closure space (Soltan, 1984) if 1., 2, 4. hold.

(X, cl) is usual topology, in closure terms, if 2., 3., 4. hold.
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The pseudo-Euclidean distance of signature (p, q = n − p) on Rn is

dpE(x, y) =

p
∑

i=1

(xi − yi)
2 −

n
∑

i=p+1

(xi − yi)
2.

The pseudo-Euclidean space of signature (p, q = n − p) is a real vector

space equipped with a non-degenerate, indefinite, symmetric bilinear

function 〈·, ·〉. A basis e1, . . . , ep+q is orthonormal if 〈ei, ej〉 = 0 for i 6= j,

〈ei, ei〉 = +1 for 1 ≤ i ≤ p and 〈ei, ei〉 = −1 for p + 1 ≤ i ≤ p + q. Given an

orthonormal basis, the inner product of two vectors x and y is

〈x, y〉 =
∑p

i=1 xiyi −
∑p+q

i=p+1 xiyi.

The pseudo-Euclidean space can be seen as R
p × iRq, where i =

√
−1.

The ”norm” 〈x, x〉 of non-zero vector x can be positive, negative or zero;

then x is called space, time or light vector, respectively.

The case (p, q) = (1, 3) is used as space-time model of Special Relativity.
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METRIC TRANSFORMS

A transform metric is a metric on a set X which is obtained as a

function of a given metric (or metrics) on X . Examples obtained from a

given metric d (or metrics d1 and d2) on X follow (here t > 0):

1. td(x, y) (t-scaled metric, or dilated metric);

2. min{t, d(x, y)} (t-truncated metric, or t-bounded metric);

3. max{t, d(x, y)} for x 6= y (t-discrete metric);

4. d(x, y) + t for x 6= y (t-translated metric);

5. d(x,y)
1+d(x,y) ;

6. max{d1(x, y), d2(x, y)};
7. αd1(x, y) + βd2(x, y), where α, β > 0 (so, semi-metric cone on X);

8. dz(x, y) = d(x,y)
d(x,z)+d(y,a)+d(x,y) where z is an fixed element of X

(biotope transform metric).
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Given a metric space (X, d) and a point z ∈ X , the Farris transform

metric on X\{z} is defined by Dz(x, x) = 0 and, for x 6= y, by

Dz(x, y) = C − (x.y)z,

where C > 0 is a constant and (x.y)z = 1
2 (d(x, z) + d(y, z) − d(x, y)) is the

Gromov product. It is a metric if and only if C ≥ C0 for some number

C0 ∈ (maxx,y∈X\{z},x6=y(x.y)z, maxx∈X\{z} d(x, z)].

Farris transform is an ultrametric if and only if d is a

R>0-edge-weighted tree metric.

In Phylogenetics, where it was applied first, the term Farris transform is

used for function d(x, y) − d(x, z) − d(y, z).
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• Given a metric space (X, d) and 0 < α ≤ 1, the power transform

metric (or snowflake transform metric) on X is (d(x, y))α.

It is a metric, for any positive α if and only if d is an ultrametric.

• Given a metric space (X, d) and a point z ∈ X , the involution

transform metric on X\{z} is

dz(x, y) =
d(x, y)

d(x, z)d(y, z)
.

It is a metric, for any z ∈ X , if and only if d is a Ptolemaic metric.

• Given a metric space (X, d) and λ > 0, the Schoenberg transform

metric on X is

1 − e−λd(x,y).

The Schoenberg transform metrics are exactly P -metrics.
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• An induced metric is a restriction of a metric (X, d) to X
′ ⊂ X .

• Given metric spaces (X, dX), (Y, dY ) and injective mapping g : X → Y ,

the pullback metric (of (Y, dy) by g) on X is dY (g(x), g(y)).

• Given a metric space (X, d) and an equivalence relation ∼ on X , the

quotient semi-metric on the set X = X/ ∼ of equivalence classes is

d(x, y)=infm∈N

∑m
i=1 d(xi, yi), where the infimum is over all sequences

x1, y1, . . . , xm, ym with x1 ∈ x, ym ∈ y and yi ∼ xi+1 if 1 ≤ i =≤ m − 1

• Given n ≤ ∞ metric spaces (X1, d1), (X2, d2), . . . , (Xn, dn), the

product metric is any metric on their Cartesian product

X1 × X2 × · · · × Xn = {x = (x1, x2, . . . , xn) : x1 ∈ X1, . . . , xn ∈ Xn},
defined as a function of d1, . . . , dn.
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• Given a metric space (X, d) with any points x, y ∈ X joined by a

rectifiable curve (i.e., of finite length), the intrinsic metric D(x, y)

is the infimum of the lengths of rectifiable curves connecting x and y.

(A (metric) curve γ is a continuous mapping γ : I → X from an

interval I of R into X . The length l(γ) of a curve γ : [a, b] → X is

l(γ) = sup{
∑

1≤i≤n

d(γ(ti), γ(ti−1)) : n ∈ N, a = t0 < t1 < · · · < tn = b}).

• The Riemannian metric of a connected n-dim. smooth manifold

Mn, is a collection of positive-definite symmetric bilinear forms ((gij))

on the tangent spaces of Mn which varies smoothly from point to point.

The length of a curve γ on Mn is
∫

γ

√

∑

i,j gijdxidxj .

The Riemannian distance (between two points of Mn) is intrinsic

metric on Mn, i.e. the infimum of lengths of curves, connecting them.

15



NUMERIAL INVARIANTS OF METRIC SPACES

• For a metric space (X, d) and any q > 0, let NX(q) be the minimal

number of sets with diameter ≤ q needed in order to cover X . The

number dimmetr = limq→0
ln N(q)
ln(1/q) (if it exists) is called its metric

dimension (or packing dimension, box-counting dimension).

• For any compact metric space (X, d), its topological dimension is

dimtop(X,d)=infd′(dimHaus(X, d′)), where d′ is any metric on X

topologically equivalent to d and dimHaus is Hausdorff dimension.

Two metrics d1, d2 on a set X are equivalent if they define same

topology on X (for any x0 ∈ X , any open d1- metric ball centered at

x0 contains an open d2-metric ball centered at x0 and conversely).
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• For any p, q > 0, let M q
p (X) = inf

∑+∞
i=1 (diamAi)

p, where infimum is

taken over all countable coverings {Ai} of X with diameter of Ai < q.

The Hausdorff dimension (or fractal dimension, capacity

dimension) of X is dimHaus = inf{p : limq→0 M q
p (X) = 0}.

It holds dimtop ≤ dimHaus ≤ dimmetr. A fractal is a metric space for

which dimtop < dimHaus.

• The Assouad-Nagata dimension dimAN of a metric space (X, d) is

the smallest integer n for which there exist a constant C > 0 such that,

for all s > 0, there exists a covering of X by its subsets of diameter at

most Cs with no point of X belonging to more than n + 1 elements.

d called a doubling metric if dimAN < ∞. It holds dimtop ≤ dimAN .
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• The metric diameter (or diameter, width) is supx,y∈X d(x, y).

If (X, d) is A-bounded (A = supx,y∈X A < ∞) and a-discrete

(a = infx,y∈X,x6=y d(x, y) > 0), then its metric spread is A
a .

• The metric radius of metric space (X, d) is infx∈X supy∈X d(x, y).

Some authors call radius the half-diameter.

The packing radius of M ⊂ X is the largest r such that the open

metric balls of radius r with centers at the elements of M are pairwise

disjoint, i.e., infx∈M infy∈M\{x} d(x, y) > 2r.

The covering radius of M ⊂ X is supx∈X infy∈M d(x, y), i.e., the

smallest number R such that the open metric balls of radius R with

centers at the elements of M cover X . It is dHaus(X, M).

• A metric space (X, d) has the order of congruence n if every finite

metric space which is not isometrically embeddable in (X, d) has a

subspace with ≤ n points which is not isometrically embeddable in it.
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• Given a compact connected metric space (X, d), there exists a unique

number r(X, d) > 0, rendez-vous number (or magic number) such

that for all x1, . . . , xn ∈ X and any n, there exists an x ∈ X with
1
n

∑n
i=1 d(xi, x) = r(X, d).

• Given a set D ⊂ R>0, the D-chromatic number of (X, d) is the

standard chromatic number of the D-distance graph of (X, d), i.e.,

the graph with the vertex-set X and the edge-set {xy : d(x, y) ∈ D}.
Usually, (X, d) is an lp-space and D = {1} or D = [1 − ǫ, 1 + ǫ].

• The average distance is the number 1
|X|(|X|−1)

∑

x,y∈X d(x, y).

The Wiener index (used in Chemistry) is 1
2

∑

x,y∈X d(x, y).

• The p-energy is the number
∑

x,y∈X,x6=y
1

dp(x,y) ; usually, p = 1, 2.

A center of mass is a point x ∈ X minimizing
∑

y∈X d2(x, y).
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RELEVANT NOTIONS: SUBSETS, MAPPINGS, CONVEXITY

• Given distinct points x, y ∈ X , the midset (or bisector) is the set

{z ∈ X : d(x, z) = d(y, z)} of midpoints z.

• M ⊂ X is a metric basis of X if d(x, z) = d(y, z) for all z ∈ M implies

x = y. The numbers d(x, z), z ∈ M, are the metric coordinates of x.

• Given a finite or countable semi-metric space (X = {x1, · · · , xn}, d), its

distance matrix is the symmetric n × n matrix ((dij)), where

dij = d(xi, xj) for any 1 ≤ i, j ≤ n.

The semi-metric cone is the set of all distance matrices on X .

• The proximity (or underlying) graph of metric space (X, d) is a

graph with the vertex-set X and xy being an edge if no point z ∈ X

with d(x, y) = d(x, z) + d(z, y) exists.
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• The point-set distance d(x, M) between x ∈ X and M ⊂ X is

infy∈M d(x, y). The function fM (x) = d(x, M) is distance map.

Distance maps are used in MRI (M being gray/white matter interface)

as cortical maps, in Image Processing (M being image boundary), in

Robot Motion (M being the set of obstacle points).

• A subset M ⊂ X is Chebyshev set (or gated set) if for every x ∈ X ,

there is unique z ∈ M with d(x, z) = d(x, M).

• The set-set distance between two subsets A, B ⊂ X is

infx∈A, d(x, B)=infx∈A,y∈B d(x, y). In Cluster Analysis, it is single

linkage, while supx∈A,y∈B d(x, y) is complete linkage.

• The Hausdorff metric (on all compact subspaces of (X, d)) is

dHaus(A, B)=max{ddHaus(A, B), ddHaus(B, A)}, where

ddHaus(A, B)=maxx∈A miny∈B d(x, y) is directed Hausdorff

distance.
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MAPPINGS FOR METRIC SPACES

• Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is an

isometric embedding of X into Y if it is injective and

dY (f(x), f(y)) = dX(x, y) holds for all x, y ∈ X .

An isometry is a bijective isometric embedding.

• Two metric spaces (X, dX) and (Y, dY ) are homeomorphic if there

exists a bijection f : X → Y with continuous f and f−1 , i.e., all

points close to x map to points close to g(x).

• Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is

called a short mapping from X to Y if, for all x, y ∈ X , holds

dY (f(x), f(y)) ≤ dX(x, y). The category of metric spaces (Isbell),

denoted by Met, has metric spaces as objects and short mappings as

morphisms. In Met, the isomorphisms are isometries.
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• Again, given metric spaces (X, dX) and (Y, dY ), a function f : X → Y

is an isometric embedding of X into Y if it is injective and

dY (f(x), f(y)) = dX(x, y) holds for all x, y ∈ X .

An isometry is a bijective isometric embedding.

• A function f : X → Y is a quasi-isometry if there are numbers C > 1

and c > 0 such that C−1dX(x, y) − c ≤ dY (f(x), f(y)) ≤ Cd(x, y) + c,

and for every point y ∈ Y there is a point x ∈ X with dY (y, f(x)) ≤ c.

A quasi-isometry with C = 1 is coarse (or rough) isometry.

• A metric space (X, d) is homogeneous if, for each two finite isometric

subsets Y = {y1, . . . , ym} and Z = {z1, . . . , zm} of X , there exists a

self-isometry (motion) of (X, d) mapping Y to Z.

• (X, d) is symmetric if for any p ∈ X there is a symmetry relative

to p, i.e., a motion (self-isometry) fp of (X, d) such that fp(fp(x)) = x

for all x ∈ X and p is an isolated fixed point of fp.
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CONVEXITY NOTIONS FOR METRIC SPACES

Given a metric space (X, d), a metric curve (or curve) γ in it is a

continuous mapping γ : I → X from an interval I of R into X .

The length l(γ) of a curve γ : [a, b] → X is defined by

l(γ) = sup{
∑

1≤i≤n

d(γ(ti), γ(ti−1)) : n ∈ N, a = t0 < t1 < · · · < tn = b}.

A geodesic segment (or shortest path) [x, y] from x to y is

(the image of) an isometric embedding γ : [a, b] → X with γ(a) = x

and γ(b) = y.

• A metric space (X, d) is called geodesic metric space (or convex) if

any two points are joined by a geodesic segment.
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• (X, d) is midpoint convex (or admitting midpoint map) if, for any

different points x, y ∈ X , there exists a third point z ∈ X , a midpoint

m(x, y), for which d(x, y) = d(x, z) + d(z, y) and d(x, z) = 1
2d(x, y).

• (X, d) is Busemann convex (or globally non-positively

Busemann curved) if it is midpoint convex and, for any three points

x, y, z ∈ X and midpoints m(x, z) and m(y, z), it holds

d(m(x, z), m(y, z)) ≤ 1

2
d(x, y).

• ball convex if it is midpoint convex and for all x, y, z ∈ X it holds

d(m(x, y), z) ≤ max{d(x, z), d(y, z)}.

• distance convex if it is midpoint convex and for all x, y, z ∈ X holds

d(m(x, y), z) ≤ 1

2
(d(x, z) + d(y, z)).

25



• Menger convex (or M-convex) if, for any different points x, y ∈ X ,

there exists a third point z ∈ X for which d(x, y) = d(x, z) + d(z, y).

• (X, d) is metrically convex if, for any different points x, y ∈ X and

any λ ∈ (0, 1), there exists a third point z = z(x, y, λ) ∈ X for which

d(x, y) = d(x, z) + d(z, y) and d(x, z) = λd(x, y).

(X, d) is strictly metrically convex if the point z(x, y, λ) is unique

for all x, y ∈ X and λ ∈ (0, 1).

• (X, d) is hyperconvex (or injective) if it is metrically convex and its

metric balls have the infinite Helly property, i.e., any family of

mutually intersecting closed balls in X has non-empty intersection.
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MAIN CLASSES OF METRICS

• Given a connected graph G = (V, E), the path metric between two

vertices is the number of edges of a shortest path connecting them.

• Given a finite set X and a finite set O of (unary) editing operations

on X , the editing metric on X is the path metric of the graph with

the vertex-set X and xy being an edge if y can be obtained from x by

one of the operations from O.
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• On a normed vector space (V, ||.||), the norm metric is ||x − y||.

• The lp-metric, 1 ≤ p ≤ ∞, is ||x − y||p norm metric on Rn (or on Cn),

where ||x||p = (
∑n

i=1 |xi|p)
1
p for p < ∞ and ||x||∞ = max1≤i≤n |xi|.

The Euclidean metric (or Pythagorean distance, as-crow-flies

distance, beeline distance) is l2-metric on R
n.

• Banach-Mazur distance between n-dim. normed spaces V and W

is ln infT {||T || · ||T−1||, where T : V → W is an isomorphism.

• Lipschitz distance between metric spaces (X, dX) and (Y, dY ) is

inff{||f ||Lip · ||f−1||Lip}, where infimum is over all bijective functions

f : X → Y and the Lipschitz norm is

||f ||Lip = sup{dY (f(x),f(y))
dX(x,y) : x, y ∈ X, x 6= y}.
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• Given a measure space (Ω,A, µ), the symmetric difference (or

measure) semi-metric on the set Aµ = {A ∈ A : µ(A) < ∞} is

µ(A△B) (where A△B = (A ∪ B)\(A ∩ B) is the symmetric

difference of the sets A, B ∈ Aµ) and 0 if µ(A△B) = 0.

Identifying A, B ∈ Aµ if µ(A△B) = 0, gives the measure metric.

If µ(A) = |A|, then |A△B| = 0 iff A = B and |A△B| is a metric.

• Given a measure space (Ω,A, µ), the Steinhaus semi-metric on

the set Aµ = {A ∈ A : µ(A) < ∞} is 0 if µ(A ∪ B) = 0 and

µ(A△B)

µ(A ∪ B)
= 1 − µ(A ∩ B)

µ(A ∪ B)
, otherwise.

The biotope (or Tanimoto) metric |A△B|
|A∪B| is the case µ(A) = |A|.
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The Hamming metric on R
n is dH = |{i : 1 ≤ i ≤ n, xi 6= yi}|.

On vertices of unit cube {0, 1}n it is l1-metric and squared l2-metric.

Eqv., for subsets A, B ⊂ X with |X | = n, it is measure metric

|A△B|.
The Bray-Curtis distance on Rn is

P |xi−yi|
P

(xi+yi)
.

The Canberra distance on R
n is

∑ |xi−yi|
|xi|+|yi| .

The Mahalonobis distance (or statistical distance) on R
n is

√

(detA)
1
n (x − y)A−1(x − y)T ,

where A is a positive-definite matrix.

The Hellinger distance on Rn
+ is

√

2
∑

(

√

xi

x −
√

yi

y

)2

.
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Metrics on real plane R
2

• Given a norm ||.|| on R
2, the French Metro metric on R

2 is ||x− y||
if x = cy for some c ∈ R and ||x|| + ||y||, otherwise.

For Euclidean norm, it is called Paris metric (or hedgehog metric)

• Given a norm ||.|| on R
2 (in general, on R

n), the British Rail metric

(or Post Office metric, caterpillar metric, shuttle metric) is

||x|| + ||y|| for x 6= y (and it is equal to 0, otherwise).

• Let d be a metric on R
2 (in general, on any metric space) and let f be

a fixed point (a flower-shop) in the plane.

The flower-shop metric (or SNCF metric) on R2 is

d(x, f) + d(f, y) for x 6= y (and it is equal to 0, otherwise). If

d(x, y) = ||x − y|| and f = (0, 0), it is the British rail metric.
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• The lift metric (or raspberry picker metric or metric ”river”)

on R
2 is |x1 − y1| if x2 = y2 and |x1| + |x2 − y2| + |y1| if x2 6= y2.

• The Central Park metric on R
2 is the length of a shortest l1-path

(Manhattan path) between two points x, y ∈ R
2 at the presence of a

given set of areas which are traversed by a shortest Euclidean path (for

example, Central Park in Manhattan).

• Let O = {O1, . . . , Om} be a collection of pairwise disjoint polygons on

the Euclidean plane representing a set of obstacles which are neither

transparent, nor traversable. The collision avoidance distance (or

piano movers distance) is a metric on R2\{O}, defined as the length

of the shortest path among all possible continuous paths, connecting x

and y, that do not intersect obstacles Oi\∂Oi,
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Metrics on digital plane Z
2

A computer image is a subset of Zn (digital nD space). Usually,

n=2. The points of Z
2 and Z

3 are pixels and voxels, respectively.

A digital metric is any integer-valued metric on a digital nD space.

Main digital metrics are: the l1-, l∞-metrics and (rounded to nearest,

upper or lower, integer) l2-metric.

A list of neighbors of a pixel can be seen as a list of permitted

one-step moves on Z2. Associate a positive weight to each type of

such move. Many digital metrics are the minimum, over all admissible

paths (sequences of permitted moves) of the sum of their weights.

• The rook metric is a metric on Z2, defined as the minimum number

of moves a chess rook need to travel from x to y ∈ Z2. It is

{0, 1, 2}-valued and coincides with the Hamming metric on Z
2.
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• The grid metric is the l1-metric on Z
n. It is the path metric of an

infinite graph: two points of Zn are adjacent if their l1-distance is 1.

For n = 2, this metric is restriction on Z2 of Manhattan metric and

it called 4-metric since each point has exactly 4 l1-neighbors in Z
2.

• The lattice metric is the l∞-metric on Z
n. It is the path metric of

an infinite graph: two points of Zn are adjacent if their l∞-distance is

1. For Z2, the adjacency corresponds to the king move in chessboard

terms, and this metric is called chessboard metric (or king metric,

8-metric since each point has exactly 8 l∞-neighbors in Z
2 ).

• The hexagonal metric is a metric on Z
2 with an unit sphere S1(x):

S1(x) = S1
l1

(x) ∪ {(x1 ± 1, x2 − 1), (x1 ± 1, x2 + 1)} if x2 is odd/even.

Since |S1(x)| = 6, the hexagonal metric is called also 6-metric. The

hexagonal metric is the path metric on the hexagonal grid of the

plane. It approximates l2-metric better than l1- or l∞-metric.
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• The knight metric is a metric on Z
2, defined as the minimum number

of moves a chess knight would take to travel from x to y ∈ Z
2.

• Let p, q ∈ N such that p + q is odd, and (p, q) = 1.

A (p, q)-super-knight (or (p, q)-leaper) is a (variant) chess piece a

move of which consists of a leap p squares in one orthogonal direction

followed by a 90 degree direction change, and q squares leap to the

destination square. Chess-variant terms for an (p, 1)-leaper with

p=0, 1, 2, 3, 4: Wazir, Ferz, usual Knight, Camel, Giraffe and for

an (p, 2)-leaper with p = 0, 1, 2, 3: Dabbaba, Knight, Alfil, Zebra.

A super-knight metric on Z2 is the minimum number of moves a

(p, q)-super-knight would take to travel from x to y ∈ Z
2.

The knight metric is the (1, 2)-super-knight metric.

The l1-metric is (0, 1)-super-knight metric, i.e., the Wazir metric.
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• Given α, β ≥ 0 with α ≤ β < 2α, consider (α, β)-weighted l∞-grid,

i.e., pixel graph (V = Z2, E) with (xy) ∈ E if |x − y|∞ = 1, and

horizontal/vertical and diagonal edges having weights α and β, resp.

Borgefors (α, β)-chamfer metric is the weighted path metric of

this graph. The main cases are (α, β)=(1, 0) (l1-metric), (3, 4), (1, 1)

(l∞-metric), (1,
√

2) (Montanari metric), (5, 7) (Verwer metric),

(2, 3) (Hilditch-Rutovitz metric).

• An (α, β, γ)-chamfer metric is the weighted path metric of voxel

graph (V = Z3, E) with (xy) ∈ E if |x − y|∞ = 1, and moves to 6 face,

12 edge, 8 corner neighbors having weights α, β, γ, respectively.

The cases (α, β, γ)=(1, 1, 1) (l∞-metric), (3, 4, 5), (1, 2, 3) are the most

used ones for digital 3D images.
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DISTANCES IN BIOLOGY

1. DISTANCES FOR FREQUENCY, DNA/RNA, PROTEIN DATA

2. OTHER BIO DISTANCES (FOR GENOMES, REACTIONS ETC.)

3. DISTANCES ON TREES

4. BIOLOGICAL DISTANCE MODELS

5. VISUAL, AUDITORY AND HAPTIC SPACES

6. REAL-WORLD BIOLOGICAL DISTANCES

7. IMAGE DISTANCES

8. AUDIO DISTANCES
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The distances are mainly used in Biology to pursue basic classification

tasks, for instance, for reconstructing the evolutionary history of

organisms in the form of phylogenetic trees.

In the classical approach those distances were based on the

comparative morphology, physiology, mating studies, paleontology and

immunodiffusion.

The progress of modern Molecular Biology allowed also to use

nuclear- and/or amino-acid sequences to estimate distances between

genes, proteins, genomes, organisms, species, etc..
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DNA is a sequence of nucleotides (or nuclei acids) A, T, G and C,

and it can be seen as a word over this alphabet of 4 letters.

In RNA, it is uracil U instead of T.

Two strands of DNA are held together (in the form of a double helix)

by (weak hydrogen) bonds between corresponding nucleotides

(necessarily, a purine A, G and a pyrimidine T, C) in the strands

alignment. Those pairs are called base pairs.

A mutation is a substitution of a base pair.

DNA molecules occur (in the nuclei of eukaryote cells) in the form of

long strings, called chromosomes.

A gene is a contiguous stretch of DNA, which encodes a protein or an

RNA molecule. The location of a gene on its chromosome is gene

locus. Different versions (states) of a gene are called its alleles.
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A proteins, i.e., hormones, catalysts (enzymes), antibodies etc. are

large molecules formed by amino acids. There are 20 amino acids; the

three-dimensional shape of a protein is defined by the (linear) sequence

of amino acids, i.e., by a word in this alphabet in 20 letters.

The genetic code is the correspondence, universal to (almost) all

organisms, between some codons (ordered triples of nucleotides) and

20 amino acids. It express the genotype (information, contained in

genes, i.e., in DNA) as the phenotype (proteins).

A genome is entire genetic constitution of a species or of a living

organism.
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IAM (for infinite-alleles model of evolution) assumes that an allele can

change from any given state into any other given state.

It corresponds to primary role for genetic drift (i.e. random variation

in gene frequencies from one generation to another); especially in small

populations, over natural selection (stepwise mutations).

SMM (for step-wise mutation model of evolution) is more convenient

for (recently, most popular) micro-satellite data. Micro-satellites are

highly variable repeating short sequences of DNA; their mutation rate

is 1 per 1000-10000 replication events, while it is 1/1000000 for

allozymes. Micro-satellite data (for example, for DNA fingerprinting)

consists of numbers of repeats of micro-satellites for each allele.
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The term taxonomic distance is used for every distance between two

taxa, i.e., entities or groups, which are arranged into an hierarchy (a

tree indicating relationship).

Linnean taxonomic hierarchy is arranged in ascending series of

ranks: Zoology (7 ranks: Kingdom, Phylum, Class, Order, Family

Genus, Species) and Botany (12 ranks).

A phenogram is an hierarchy expressing phenetic relationship, i.e.,

unweighted overall similarity. A cladogram is a strictly genealogical

(by ancestry) hierarchy in which no attempt is made to represent

amount of genetic divergence between taxa.

A phylogenetic tree is an hierarchy representing a hypothesis of

phylogeny, i.e., evolutionary relationships within and between

taxonomic levels, especially the patterns of lines of descent.
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Distances between any two taxa (points on phylogenetic tree) are:

Phenetic distance: a measure of the difference in phenotype.

Phylogenetic (or cladistic, genealogical) distance: the minimum

number of edges, separating them in a phylogenetic tree.

Evolutionary (or patristic, general genetic) distance: a measure of

genetic divergence estimating the divergence time, i.e., the time that

has past since those populations existed as a single population.

General immunological distance: a measure of the strength of

antigen-antibody reactions. Precise terms for immunological and

genetic distances will be defined below.

The main way to estimate genetic distance between DNA, RNA or

proteins is to compare their (nucleotide or amino acid) sequences.

Main non-sequencing techniques are immunology, annealing (cf.

DNA hybridization metric) and comparing images under gel

electrophoresis (separation by an electric charge) and dye staining.

43



Proponents of molecular clock hypothesis estimate that 1 unit of

immunological albumin distance between two taxa corresponds to

≈ 540, 000 years of their divergence time, and that 1 init of Nei

standard genetic distance corresponds to 18 − 20 million years.

Sarich and Watson,1967, estimated albumin immunological differences

for pairs humans-monkeys, apes-monkeys, humans-apes as are 6%, 6%,

1%, resp. Since the hominoids/monkeys divergence time is 30 mya and

their immunological distance is 6%, they deduced humans/apes

divergence time as 1
6 of it, i.e., 5 mya ago.

Zuckerkandl and Pauling, 1960, sequenced the hemoglobin amino acids

of several species. The difference was roughly proportional to estimated

geologucal time since these species had a common ancestor. The

hemoglobins of 3 mammals (human, horse, mouse) originated ≈ 70

mya) differed pairwisely by ≈ 20 amino acids, while, for each of them

and shark (originated ≈ 470 mya), they differed by ≈ 80 amino acids.
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• An antigen is any molecule eliciting immune response. Antibodies

are specific proteins that bind to the antigen.

The index of dissimilarity id(x, y) between two taxa x and y is the

factor by which the heterologous (reacting with an antibody not

induced by it) antigen concentration must be raised to get a reaction as

strong as that to the homologous (reacting with its specific antibody)

antigen. The immunological distance is 100(log id(x, y)+log id(x, y))

Earlier immunodiffusion procedure compared the amount of precipitate

when heterologous bloods were added in similar amount as homologous

ones, or compared highest dilution giving positive reaction.

The name of applied antigen (target protein) can be used to specify

immunological distance, say, albumin, transferrin, lysozyme distances.

An antiserum titer is a measurement of concentration of antibodies

found in a serum. Titers are expressed in their highest positive dilution.
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DISTANCES FOR FREQUENCY, DNA, PROTEIN DATA

Those distances between populations measure evolutionary divergence

by counting the number of allelic substitutions by loci.

A population is represented by a double-indexed vector x = (xij)

with
∑n

j=1 mj components, where xij is the frequency of ith allele

(the label for a state of a gene) at the jth gene locus mj is the number

of alleles at the jth locus and n is the number of considered loci.
∑

denotes summation over all i and j. It holds xij ≥ 0,
∑mj

i=1 xij = 1.

• Dps distance is − ln
P

min(xij ,yij)
P

n
j=1 mj

.

• Prevosti-Ocana-Alonso distance is
P

|xij−yij |
2n .

• Roger metric is 1√
2n

∑n
j=1

√

∑mj

i=1(xij − yij)2.

• Cavalli-Sforza arc distance is 2
π arccos(

∑√
xijyij).
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• Nei-Tajima-Tateno DA distance is 1 − 1
n

∑√
xijyij .

• Nei minimum genetic distance is 1
2n

∑

(xij − yij)
2.

• Nei standard genetic distance is − ln I, where I is Nei

normalized identity of genes defined by 〈x,y〉
||x||2·||y||2 .

Cf. Bhattacharya distance and angular semi-metric.

• Sangvi χ2 distance is 2
n

∑ (xij−yij)
2

xij+yij
.

• Latter F-statistics distance is
P

(xij−yij)
2

2(n−P

xijyij)
.

• Goldstein and al. distance is
1
n

∑

(ixij − iyij)
2 or 1

n2 (
∑

(ixij − iyij))
2.

• Average square distance is 1
n

∑n
k=1(

∑

1≤i<j≤mj
(i − j)2xikyjk).
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• The kinship distance − ln〈x, y〉 and kinship coefficient 〈x, y〉.

• Reynolds-Weir-Cockerham distance (or co-ancestry distance)

− ln(1 − θ), where co-ancestry coefficient θ(x, y) of two individuals

(or populations) is the probability that a randomly picked allele from

one is identical by descent (i.e. corresponding genes are copies of the

same ancestral gene) to a randomly picked allele in another. Two genes

can be identical by state (having same allele label) but not by

descent.

θ(x, y) is the inbreeding coefficient F of their next generation.
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Distances between DNA, RNA or protein sequences are usually

measured in terms of substitutions, i.e. mutations, between them.

A DNA sequence is a string x = (x1, . . . , xn) over the alphabet

{A, C, G, T} of nucleotides;
∑

denotes
∑n

i=1.

• No. of differences is just the Hamming distance
∑

1xi 6=yi
.

”Non-corrected”

• p-distance is dp(x, y) =
P

1xi 6=yi

n .

• Jukes-Cantor nucleotide distance is − 3
4 ln(1 − 4

3dp).

• Tajima-Nei distance is −b ln
(

1 − dp(x,y)
b

)

, where

b = 1
2

(

1 − ∑

j=A,T,C,G

(

1xi=yi=j

n

)2

+ 1
c

∑

(

1xi 6=yi

n

)2
)

and

c = 1
2

∑

i,k∈{A,T,G,C},j 6=k
(

P

1(xi,yi)=(j,k))
2

(
P

1xi=yi=j)(
P

1xi=yi=k) .
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• Hybridization is the process of combining, into a single molecule,

complementary, single-stranded nucleic acids.

Annealing is binding of two strands by interchange of all A, T, G, C

by T, A, C, G, resp. (Watson-Crick complementation).

Denaturation is the reverse process of separating two strands of the

double stranded DNA/RNA molecule (heating breaks hydrogen bonds

between bases). The rate of annealing of two strands (or t0 at which

denaturation occurs) measures similarity of their base sequences.

Garson et al. hybridization metric between DNA cubes A and B

is minx∈A,y∈B H(x,y), where, for DNA n-sequences x and y, H(x, y) is

min−n≤k≤n

∑

1xi 6=y∗
i+k

. Here indexes i + k are modulo n and y∗ is the

reversal of y followed by Watson-Crick complementation. A DNA

cube is any maximal set of DNA n-sequences with all H(x, y) = 0.
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A protein sequence is a sequence x = (x1, . . . , xn) over alphabet of

20 amino acids;
∑

denotes
∑n

i=1.

Among notions of similarity/distance on the set of 20 amino acids

(based on their hydrophilicity, polarity, charge, shape etc.), most

important is 20 × 20 Dayhoff PAM250 matrix expressing relative

mutability of 20 amino acids.

• PAM distance (or Dayhoff-Eck distance) between two protein

sequences is the minimal number of accepted (fixed) point mutations

per 100 amino acids, needed to transform one protein into another.

1 PAM is a unit of evolution: it corresponds to 1 point mutation per

100 amino acids. PAM values 80, 100, 200, 250 correspond to the

distance (on %) 50, 60, 75, 92 between proteins.
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• No. of differences is the Hamming distance
∑

1xi 6=yi
.

• Amino p-distance (or uncorrected distance) is dp(x, y) =
P

1xi 6=yi

n .

• Amino Poisson correction distance is − ln(1 − dp).

• Amino γ distance (or Poisson correction γ distance) is

a((1 − dp)
−1/a − 1), if mutation rate is γ-distributed with parameter a.

For a = 2.25, it is Dayhoff distance.

• Jukes-Cantor protein distance is − 19
20 ln(1 − 20

19dp).

• Kimura protein distance is − ln(1 − dp − d2
p

5 ).
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OTHER BIOLOGICAL DISTANCES

• An RNA sequence (or RNA primary structure) is a string over

the alphabet {A, C, G, U} of nucleotides. Inside a cell, such string folds

in 3D space (as RNA tertiary structure), because of pairing of

nucleotide bases (usually, by bonds A–U, G–C and G–U).

The RNA secondary structure is, roughly, the set of helices (or the

list of paired bases) making up the RNA. This structure can be

represented as planar graph and further, as rooted tree.

An RNA structural distance between two RNA sequences is a

distance between their secondary structures.

Examples are: tree edit distance (and other distances on rooted

trees), and the base-pair distance, i.e., the symmetric difference

metric between secondary structures seen as sets of paired bases.
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• Represent RNA secondary structure by a graph (V = {1, . . . , n}, E)

such that, for 1 ≤ i ≤ n, (i, i + 1) /∈ E and (i, j), (i, k) ∈ E imply j = k.

Let E = {(i1, j1), . . . , (ik, jk)} and let (ij) denote the transposition of

i, j. Then π(G) =
∏k

t=1(itjt) is an involution.

The Reidys-Stadler-Rosello metrics between G = (V, E) and

G′ = (V ′, E′) are (ln 2)|E∆E′| and |E∆E′| − 2T , where T is the

number of cyclic orbits of length greater than 2 induced by the action

on V of the subgroup 〈π(G), π(G′)〉 of the group Symn. The second

metric is the number of transpositions needed to represent π(G)π(G′).

Let IG = 〈xixj : (xi, xj) ∈ E〉 be the monomial ideal (in the ring of

polynomials in variables x1, . . . , xn with coefficients 0, 1) and M(IG)m

be the set of monomials of degree ≤ m belonging to IG.

For any m ≥ 3, a Liabrés-Rosello monomial metric between G and

G′ is |M(IG)m−1∆M(IG′)m−1|.
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• The fuzzy polynucleotide metric (or NTV-metric) is the metric
P

1≤i≤12 |xi−yi|
P

1≤i≤12 max{xi,yi} (Nieto, Torres and Valques-Trasande, 2003) on the

12-dimensional unit cube I12.

Coding letters U, C, A, G of RNA alpabet as (1, 0, 0, 0, ), (0, 1, 0, 0),

(0, 0, 1, 0), (0, 0, 0, 1), resp,, one can see 64 possible triplet codons of the

genetic code as vertices of I12. Then any point x = (x1, . . . , x12) ∈ I12

can be seen as a fuzzy polynucleotide codon with xi expressing the

grade of membership of element i, 1 ≤ i ≤ 12, in the fuzzy set x. 64

vertices of the cube are the crisp sets.

Dress and Lokot:
P

1≤i≤n
|xi−yi|

P

1≤i≤n max{|xi|,|yi|} is a metric on whole Rn.

On R
n
≥0 this metric is 1 − s(x, y), where s(x, y) =

P

1≤i≤n min{xi,yi}
P

1≤i≤n
max{xi,yi} is

the Ruzicka similarity.
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• Given a connected graph G = (V, E), the path metric between two

vertices is the number of edges of a shortest path connecting them.

• Given a finite set O of (unary) editing operations on a finite set X ,

the editing metric on X is the path metric of the graph with the

vertex-set X and xy being an edge if and only if y can be obtained

from x by operations from O.

An alphabet is a set A, 2 ≤ |A| ≤ ∞ of characters. A string is a

sequence of characters over A; W (A) is the set of all finite strings.

Main editing operations on strings are: character replacement,

character indel (insertion or deletion of a character), character

swap (interchange of adjacent characters) and blok reversal.

On 2nn! signed permutations, for example, signed reversal is a move

from x1, . . . , xn to x∗
n, . . . , x∗

1, where x∗
i = −xn−i.
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• The Levenstein metric (or Hamming+Gap metric, shuffle

Hamming distance, character edit metric) is an editing metric on

W (A) with O consisting of only character replacements and indels.

The Levenstein metric between strings x = x1 . . . xm and y = y1 . . . yn

is equal to min{dH(x∗,y∗)}, where x∗, y∗ are strings of length k,

k ≥ max{m, n}, over alphabet A∗ = A ∪ {∗}, so that after deleting all

new characters ∗, strings x∗ and y∗ shrink to x and y, respectively.

Here, the gap is the new symbol ∗, and x∗, y∗ are shuffles of strings x

and y with strings consisting of only ∗.

57



• If (A, d) is a metric space, the Needleman-Wunsch-Sellers metric

(or Levenstein distance with costs, global alignment metric) is

an editing distance with costs on W (A) obtained for O consisting

of only indels, each of fixed cost q > 0, and character replacements,

where the cost of replacement of i by j is d(i, j). This metric is the

minimal total cost of transforming x into y by those operations.

The Gotoh-Smith-Waterman distance is a more specialized editing

metric with costs. It discounts mismatching parts in the beginning and

end of the strings x, y and has one indel cost for starting an affine

gap (contiguous block of indels) and lower cost for extending a gap.
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• The genomes of unichromosomal species or 1-chromosome

organelles (as small viruses and mitochondria) are represented by the

order of genes along chromosomes, i.e., as permutations (or

rankings) of given set of n homologous genes.

If the directionality of the genes is accounted for, a chromosome is

described by a signed permutation.

The circular genomes are represented by circular (signed)

permutations x = (x1, . . . , xn), where xn+1 = x1.

Given a set of considered mutation moves, a genomic distance

between two such genomes is the editing metric with editing

operations being these moves, i.e., the minimal number of moves

needed to transform one (signed) permutation into another.
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In addition (usually, instead) of local mutations (as character indels or

replacements in the DNA sequence), the large rearrangement (those

happening on large portion of the chromosome) mutations are

considered, and corresponding genomic editing metrics are called

genome rearrangement distances. Such mutations being rarer,

these distances estimate better true genomic evolutionary distance.

The main genome (chromosomal) rearrangements are:

for permutations, inversions (block reversals), transpositions

(exchanges of two adjacent blocks), inverted transposition

(inversion combined with transposition)

and, for signed permutations only, signed reversals (sign reversal

combined with inversion).
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Main genome rearrangement distances between two unichromosomal

genomes are: reversal metric and signed reversal metric;

transposition distance: the minimal number of transpositions

needed to transform (permutation representing) one into another;

ITT-distance: the minimal number of inversions, transpositions and

inverted transpositions needed to transform one of them into another.

Given two circular signed permutations x = (x1, . . . , xn) and

y = (y1, . . . , yn) (so, xn+1 = x1 etc.), a breakpoint is a number i,

1 ≤ i ≤ n, such that yi+1 6= xj(i)+1, where the number j(i),

1 ≤ j(i) ≤ n, is defined by yi = xj(i).

The breakpoint distance (Watterson-Ewens-Hall-Morgan, 1982)

between genomes (represented by x,y) is the number of breakpoints.
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• Multichromosomal genomes can be seen as unordered collections of

systeny sets of genes, where two genes are systenic if they appear in

the same chromosome.

The syntenic distance (Ferretti-Nadeau-Sankoff, 1996) between such

genomes is the minimal number of mutation moves:

translocations (exchanges of genes between two chromosomes),

fusions (merging of two chromosomes into one), fissions (split of one

chromosome into two) needed to transfer one genome into another.

Above three mutation moves correspond to interchromosomal genome

rearrangements, which are rarer than intrachromosomal ones; so, they

give information about deeper evolutionary history.
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Example of distance function selection for PR in neuronal network.

To gain information about functional connectivity of a neuronal network,

one needs to classify neurons, in terms of their firing similarity; so, to select

a distance function and a clustering algorithm. A classical example: simple

and complex cells discrimination between in the primary visual cortex.

A human brain has ≈ 1011 of neurons (nerve cells). Neuronal response to

a stimulus is a continuous time series. It can be reduced, by a threshold

criterion, to much simpler discrete series of spikes (short electrical pulses),

A spike train is a sequence x = (t1, . . . , ts) of s events (neuronal spikes, or

hearth beats, etc.) listing absolute spike times or inter-spike time intervals.

”Good” distances between spike trains should minimize bias (due to

predefining analysis parameters if any) and resulting clusters should well

match the stimuli and reproduce some control clustering.
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Main distances between spike trains x = x1, . . . , xm and y = y1, . . . , yn:

1. |n−m|
max{m,n} (spike count distance); no bias by predefining analysis

parameters, but the temporal structure of trains is missed.

2.
∑

1≤i≤s(x
′
i − y′

i)
2, where, say, x′ = x′

1, . . . , x
′
s is the sequence of local

firing rates of train x = x1, . . . , xm partitioned in s time intervals of length

Trate (firing rate distance); bias due to predefinition of Trate.

3. Let τij = 1
2 min{xi+1 − xi, xi − xi−1, yi+1 − yi, yi − yi−1} and c(x|y)=

∑m
i=1

∑n
j=1 Jij , where Jij = 1, 1

2 , 0 if 0 < xi − yi ≤ τij , xi=yi, else, resp.

Event sinchronization distance (Quiroga et al., 2002) is 1− c(x|y)+c(y|x)√
mn

.

Two metrics (above and below) have no parameter presetting time scale.

4. Let xisi(t) = min{xi : xi > t} − max{xi : xi < t} for x1 < t < xm, and

let I(t) = xisi(t)
yisi(t)−1 if xisi(t) ≤ xisi(t) and I(t) = 1 − yisi(t)

xisi(t)
, otherwise.

Kreuz et al., 2007, ISI distances are
∫ T

t=0
dt|I(t)| and

∑m
i=1 |I(ti)|.

64



5. information distances (Kullback-Leibler distance or Bennet et

al.: Kolmogorov complexity K(x|y) of train x given train y, i.e., the length

of the shortest program to compute x if y is provided as an auxiliary input.

The Kolmogorov complexity (or algotithmic entropy) K(x) of a

binary string x is the length of a shortest binary program x∗ (the ultimate

compressed version of x) to compute x on an universal computer usung a

Turing-complete language.

6. The Lempel-Ziv distance between two binary n-strings x and y is

max{LZ(x|y)
LZ(x) , LZ(y|x)

LZ(y) }, where LZ(x) = |P (x)| log |P (x)|
n approximates

uncomputable Kolmogorov complexity K(x), and

LZ(x|y) = |P (x)\P (y)| log |P (x)\P (y)|
n . Here P (x) is the set of non-overlapping

substrings into which x is parsed sequentially, so that new substring is not

yet contained in the set of substrings generated so far. For example, such

Lempel-Ziv parsing for x = 001100101010011 is 0|01|1|00|10|101|001|11.
Bias in above 2. and 3. due to transforming the trains into bitstrings.
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7. the minimal cost of transforming x into y by the following operations:

insert a spike (cost 1), delete a spike (cost 1), shift a spike by time t (cost

qt) (Victor-Purpura distance); bias due to presetting time scale q.

8. van Rossum distance, 2001, is
√

∫ ∞
0

(ft(x) − ft(y))2)dt, where x is

convoluted with ht = 1
τ e−t/τ and τ ≈ 12 ms (best); ft(x) =

∑m
0 h(t − xi).

Victor-Purpura distance ≈ van Rossum L1-distance with ht=
q
2 if 0 ≤ t < 2

q

9. cross-correlation distances, i.e., as 1 − 〈x,y〉
||x||||y|| , if components of x, y

are seen as the samples of two zero-mean random variables:

1 − 〈f(x),f(y)〉
||f(x)||||f(y)|| , where f(x) is the train x filtered by convolution with a

kernel function f(·) exponential in Haas-White, 2002, or Gaussian in

Schreiber et al., 2003; bias due to predefinition of function f(x).

10. Aronov et al. distance between two sets of labelled (by firing neuron)

spike trains is the minimal cost of transforming one to the other by spike

operations insert/delete, shift by time t, relabel with costs 1, qt, k, resp.
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• The genome distance between two loci on a chromosome is the

number of base pairs separating them on the chromosome.

• The map distance between two loci on a genetic map is the

recombination frequency expressed as a percentage. It is measured in

centimorgans cM, where 1 cM corresponds to their stat. corrected

recombination frequency 1%. 1 cM corresponds to ≈ 106 base pairs.

• The marital distance is one between birthplaces of spouses (zygotes).

• The gerontologic distance between individual of age x and y from a

population with survival fraction distributions S1(t) and S2(t),

respectively, is | ln S2(y)
S1(x) |. Here a distribution S(t) can be either

empirical, or a parametric one based on modeling.

• The ontogenetic depth is the number of cell divisions, from fertilized

egg to the adult metazoan capable of reproduction (viable gametes).
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• Telomeres: repetitive DNA sequences ((TTAGGG)n in vertebrates)

at both ends of each linear chromosome in the cell nucleus. They are

long stretches of noncoding DNA protecting coding DNA.

The number n of TTAGGG repeates is telomere length; it is ≈ 2000

in humans. Cell can divide if each of its telomeres has positive length;

otherwise, it became senescent and die.

Human telomeres are 3-20 kilobases in length; they lose ≈ 100 base

pairs (16 repeats) at each mitosis (happening each 20-180 min). Mean

leucocyte telomere length decreases with age by 9% per decade. There

is correlation between telomere length and longetivity in humans, and

between chronic emotional stress in women and telomere shortening.

But telomere length can increase (by action of enzyme telomerase or

transfer of repeats between daughter telomers); moreover, the cells of

germline, unicellular eukaryotes and some cancer cells are immortal.
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• The metabolic distance between two enzymes is the minimum

number of metabolic steps separating them in the metabolic pathways.

• The Gendron et al. distance between two base-base interactions

(represented by 4 × 4 homogeneous transformation matrices X

and Y ) is [S(XY −1)+S(X−1Y )]
2 , where S(M) =

√

l2 + (θ/α)2 and l,θ, α:

translation length, rotation angle, scaling translation/rotation factor.

• Let {s1, . . . , sn} be the set of stimuli and let qij be the conditional

probability that a subject will perceive stimulus sj , when the stimulus

si was shown; so, qij ≥ 0 and
∑n

j=1 qij = 1.

The Oliva et al. perception distance between stimuli si and sj is
1

qi+qj

∑n
k=1 | qik

qi
− qjk

qj
|, where qi is the probability of presenting si.
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• Biotopes here are represented as binary sequences x = (x1, . . . , xn),

where xi = 1 means the presence of the species i. The biotope

distance (or Tanimoto distance) is |{1≤i≤n:xi 6=yi}|
|{1≤i≤n:xi+yi>0}|=

|A△B|
|A∪B| .

• The dispersal distance is a range distance to which a species

maintains or expand the distribution of a population. It refer, for

example, to seed dispersal by pollination, to natal dispersal, to

breeding dispersal, to migration dispersal, etc.

• Given a finite metric space (X, d) (usually, a Euclidean space) and

selected, as typical by some criterion, vertex x0 ∈ X , called prototype

(or centroid), the prototype distance of x ∈ X is d(x, x0).

Usually, elements of X represent phenotypes or morphological traits.

The average of d(x, x0) by x ∈ X estimates corresponding variability.
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DISTANCES ON TREES

Let T be a rooted tree (a tree with a fixed vertex root).

The depth of a vertex v, depth(v), is the length of shortest path from

v to the root. A vertex v is parent of a vertex u, v = par(u) (and u is

child of v) if they are adjacent and depth(u) = depth(v) + 1.

Two vertices are siblings if they have the same parent. In-degree of

a vertex is the number of its children. T (v) is the subtree of T , rooted

at a node v ∈ V (T ). If w ∈ V (T (v)), then v is an ancestor of w, and

w is a descendant of v; nca(u, v) is the nearest common ancestor

of the vertices u and v. T is labeled tree if a symbol from a fixed

finite alphabet A is assigned to each node. T is ordered tree if a

left-to-right order among siblings in T is given.

On the set Trlo of all rooted labeled ordered trees there are three main

editing operations:
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1. Relabel: change the label of a vertex v;

2. Deletion: delete a non-root vertex v with parent v
′

so that children

of v become the children of v
′

; the children are inserted instead of v as

a subsequence in the left-to-right order of the children of v
′

;

3. Insertion: the complement of deletion (insert v as a child of v
′

making v the parent of a consecutive subsequence of the children of v
′

.

For unordered trees the editing operations can be defined similarly, but

insert and delete operations work on a subset instead of a subsequence.

We assume that there is a cost function defined on each editing

operation, and the cost of a sequence of editing operations is the sum

of costs of these operations.
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• The tree edit distance on Trlo is the minimum cost of a sequence of

editing operations (relabels, insertions, and deletions) turning one tree

into another. The edit tree distance can be defined in similar way on

the set of all rooted labeled unordered trees.

• The Selkow distance (or degree-1 edit distance) on Trlo is the

minimum cost of a sequence of editing operations (relabels, insertions,

and deletions) turning one tree into another if insertions and deletions

are restricted to leaves of the trees. The root of T1 must be mapped to

the root of T2, and if a node v is to be deleted (inserted), then subtree

rooted at v, if any, is to be deleted (inserted).

• The constrained edit distance on Trlo is the minimum cost of a

sequence of editing operations (relabels, insertions, and deletions)

turning one tree into another with the restriction that disjoint subtrees

should be mapped to disjoint subtrees.
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• The alignment distance on Trlo is the minimum cost of an

alignment of T1 and T2. It corresponds to a restricted edit distance,

where all insertions must be performed before any deletions.

Thus, one inserts spaces (vertices labeled with a blank symbol λ)

into both trees so they become isomorphic when labels are ignored; the

resulting trees are overlayed on top of each other giving the alignment

TA which is a tree, where each vertex is labeled by a pair of labels.

• The unit cost edit distance on Trlo is the minimum number

relabels, insertions and deletions turning one tree into another.

• The splitting-merging distance on Trlo is the minimum number of

vertex splittings and mergings needed to turn one tree into another.

• The degree-2 distance on the set Tl of all labeled trees is minimum

cost of a sequence relabels, insertions and deletions turning one tree

into another if any inserted/deleted vertex has ≤ 2 neighbors.
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A phylogenetic X-tree is an unordered, unrooted tree with the

labeled leaf set X and no vertices of degree two. Let T(X) denote the

set of all such trees. If every interior vertex has degree three, the tree is

called binary (or fully resolved).

A cut A|B of X is a partition X = A ∪ B. Removing an edge e from a

tree T ∈ T(X) induces a cut of X called cut associated with e.

• The Robinson-Foulds metric on T(X) between T1, T2 ∈ T(X) is
1
2 |Σ(T1)△Σ(T2)| = 1

2 |Σ(T1)−Σ(T2)|+ 1
2 |Σ(T2)−Σ(T1)|, where Σ(T ) is

the family of cuts of X associated with edges of T .

• The crossover metric on T(X) is the minimum number of nearest

neighbor interchanges needed to get T1 from T2.

A nearest neighbor interchange consists of swapping two subtrees

that are adjacent to the same internal edge.
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• The subtree prune-regraft distance on T(X) is the minimum

number of subtree prune-regraft transformations needed to get T1

from T2. Such transformation proceeds in 3 steps: remove an edge uv

of the tree, thereby dividing it into two subtrees Tu (containing u) and

Tv (containing v); then subdivide an edge of Tv, giving a new vertex w;

then connect u and w by an edge, and remove all vertices of degree 2.

• The tree bisection-reconnection metric (or TBR-metric) on

T(X) is the minimum number of tree bisection and reconnection

transformations needed to get T1 from T2.

Such transformation proceeds in 3 steps: remove an edge uv of the

tree, thereby dividing it into two subtrees Tu (containing u) and Tv

(containing v); then subdivide an edge of Tv, giving a new vertex w,

and an edge of Tu, giving a new vertex z; then connect w and z by an

edge, and remove all vertices of degree 2.
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• Let Tb(X) denote the set of all binary phylogenetic X-trees. The

quartet distance between T1, T2 ∈ Tb(X) is the number mismatched

quartets (from the total number (n
4 ) possible quartets) for T1 and T2.

This distance is based on the fact that given four leaves {1, 2, 3, 4} of a

tree, they can only be combined in a binary subtree in 3 different ways:

(12|34), (13|24), or (14|23): a notation (12|34) refers to the binary tree

with the leaf set {1, 2, 3, 4} in which removing the inner edge yields the

trees with the leave sets {1, 2} and {3, 4}.

• The triples distance between T1, T2 ∈ Tb(X) is the number of triples

(from the total number (n
3 ) possible triples) that differ for T1 and T2.
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• Given set A = {1, . . . , 2k}, a perfect matching of A is its partition A

into k pairs. A rooted binary tree with n labeled leaves has a root

and n − 2 internal vertices distinct from the root. It can be identified

with a perfect matching on 2n − 2, different from the root, vertices.

Let Tbr(X) denote the set of all rooted binary phylogenetic X-trees

with n the set X of labeled leaves. The perfect matching distance

between T1, T2 ∈ Tbr(X) is the minimum number of exchanges needed

to bring the perfect matching of T1 to the perfect matching of T2.
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• Let Tn(X) denote the set of all rooted ordered binary trees with n

interior vertices. The rotation distance between T1, T2 ∈ Tn is the

minimum number of rotations needed to get T1 from T2.

Given interior edges uv, vv′, vv′′ and uw of a binary tree the rotation

is replacing them by edges uv, uv′′, vv′ and vw.

There is 1-1-correspondence between edge flipping operations in in

triangulations of convex polygons with n + 2 vertices and rotations in

binary trees with n interior vertices.

• The greatest agreement subtree distance between any two trees

is the minimum number of leaves removed to obtain a common

pruned tree, i.e., an identical subtree that can be obtained from both

trees by pruning leaves with the same label.
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• An attributed tree is a triple (V, E, α), where T = (V, E) is a tree

and α is a function assigning an attribute vector α(v) to every

vertex v ∈ V . Given two attributed trees (V1, E1, α) and (V2, E2, β),

the set of all their subtree isomorphisms, i.e., all isomorphisms

f : H1 → H2, H1 ⊂ V1, H2 ⊂ V2, between their induced subtrees.

Given a similarity s on the set of attributes, the similarity between

isomorphic induced subtrees is Ws(f) =
∑

v∈H1
s(α(v), β(f(v))). Let φ

be the isomorphism with maximal similarity Ws(φ) = W (φ).

The following semi-metrics on attributed trees are used:

max{|V1|, |V2|} − W (φ), |V1| + |V2| − 2W (φ), 1 − W (φ)
max{|V1|,|V2|} ,

1 − W (φ)
|V1|+|V2|−W (φ) . They become metrics on equivalences classes of

attributed trees: two attributed trees (V1, E1, α) and (V2, E2, β) are

equivalent if there exists an isomorphism g : V1 → V2 between the

trees T1 and T2, such that, for any v ∈ V1, we have α(v) = β(g(v)).

Then |V1| = |V2| = W (g).
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BIOLOGICAL DISTANCE MODELS

• Long-distance dispersal (or LDD) refer to the rare events of

biological dispersal (especially, plants) on distances an order of

magnitude greater than median dispersal distance.

Together with vicarience theory (land bridges based on continental

drift), LDD emerged in Biogeography as main factor of biodiversity and

species migration patterns. LDD is shown to be more important for the

regional survival of some plants than local (median-distance) dispersal.

Transoceanic LDD by wind currents is a probable source of the strong

floristic similarities among landmasses in southern hemisphere.

Examples of other LDD vehicles are: rafting by water (corals can

traverse 40000 km during their lifetime), migrating birds (great

albatross can fly 300000 km), human trasport, extreme climatic events.
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• The isolation-by-distance predicts that the genetic distance between

populations increases exponentially with respect to their geographic

distance. Emergence of regional differences (races) and new species is

explained by restricted gene flow and adaptive variations. Isolation by

distance was studied, for example, via surnames.

• The Lasker distance between two human populations x and y,

characterized by surname frequency vectors (xi) and (yi), is the

number − ln 2Rx,y, where Rx,y = 1
2

∑

i xiyi is Lasker’s coefficient of

relationship by isonymy.

Surname structure is related to inbreeding and (in patrilinear societies)

to random genetic drift, mutation and migration. Surnames can be

considered as alleles of one locus, and so, distributed as neutral

mutations. An isonymy points to a common ancestry.
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• Surname distance model

In Collado et al. the preference transmission from parents to children

was estimated by comparing, for 47 provinces of Spain, 47 × 47

distance matrices for surname distance with those of consumption

and cultural distances. The distances were L1-distances
∑

i |xi − yi|
between the frequency vectors (xi), (yi) of provinces x, y, where zi is,

for the province z, either the frequency of i-th surname, or the budget

share of i-th good, or the population rate for i-th cultural issue (rate of

weddings, newspaper readership etc.), respectively.

Other distance matrices were for geographical distance (in km,

between the capitals of two provinces), income distance

|m(x) − m(y)| where m(z) is mean income in the province z, climatic

distance
∑

1≤i≤12 |xi − yi| where zi is the average temperature in the

province z during i-th month, migration distance
∑

1≤i≤47 |xi − yi|
where zi is the percentage of people (living in the province z) born in i.
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• The distance model of altruism (by Koella) suggests that altruists

spread locally (i.e. with small interaction distance and offspring

dispersal distance), while the egoists invest in increasing of those

distances. The intermediate behaviors are not maintained, and

evolution will lead to a stable bimodal spatial pattern.

• The distance running model is a model of antropogenesis (Bramble

and Lieberman) explaining the transition (from australopithecines to

non-animal genus Homo, about 2 million years ago) by adaptations to

running long distances in the savanna. Endurance running could define

the human body form, producing balanced head, low/wide shoulders,

narrow chest, short forearms, large hip etc.

• The probability-distance hypothesis (in Psychophysics): the

probability of discrimination between two stimuli is a (continuously

increasing) function of some subjective quasi-metric between them.
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VISUAL, AUDITORY AND HAPTIC SPACES

1. Selected vision distances

2. Size-distance phenomena

3. Distortion of sensual versus physical space

4. Distance cues
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• Selected vision (Ophthalmology) distances

Inter-ocular distance: the distance (≈ 6.35 cm) between the centers

of the pupils of the two eyes when the visual axes are parallel.

Near distance: the distance between the object plane and the

spectacle (eyeglasses) plane.

Vertex distance: the distance between corneal and spectacles planes.

Infinite distance: the distance ≥ 6 m (rays entering the eye from an

object at that distance appear as parallel as if comung from infinity).

Resting point of vergence: the distance at which the eyes are set to

converge (turn inward toward the nose) if there is no close object to

converge on. It is ≈ 1.14 m if looking straight ahead, and ergonomists

recommend it as eye-screen distance in sustained viewing.

Default accommodation distance: the distance at which the eyes

focus when there is nothing to focus on.
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Examples of size-distance phenomena in visual perception follow.

Emmert’s law: a retinal image is proportional in perceived size S of

object to the perceived distance D of the surface it is projected upon.

In fact, S doubles every time D is cut in half and vice versa. Emmert’s

law accounts for constancy scaling (that the size of an object is

perceived to remain constant despite the changes in the retinal image).

The size-distance centration is size overestimation of objects located

near the focus of attention and underestimation of it at the periphery.

The size-distance invariance hypothesis: the ratio of perceived

ones size and distance is the tangent of the physical visual angle. So,

the objects which appear closer should also appear smaller. But with

moon illusion (not understood yet) appears size-distance paradox:

despite of constancy of its visual angle (≈ 0.52 degree), the horizon

moon (similarly, Sun) may appear to be about twice the diameter of

the zenith moon (Sun).
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• Visual space refers to a stable percept (internal representation) of the

environment provided by vision, while haptic space (or tactile

space) and auditory space refers to such representation provided by

the senses of pressure perception and audition. The geometry of these

spaces and eventual mappings between them are unknown.

Main proposals for the visual space: a Riemannian space of constant

negative curvature (Luneburg, 1947), a general Riemannian/Finsler

space, or an affinely connected (so, not metric, in general) space.

(An affine connection is a linear map sending two vector fields into a

third one.) But expansion of perceived depth on near distances and its

contraction on far distances indicate that the mapping between visual

and physical space is not affine. There is evidence that visial space is

almost affine.

Observed distorions and size-distance phenomena should be

incorporated in good model of visual space.
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Main kinds of distortion of vision and haptic spaces versus

physical space follow; first 3 were observed for auditory space also.

Horopter lines: perceived frontparallel (to observer) lines are

physically parallel only at certain subject/task depending distance.

Parallel-alleys: perceived parallel (to the medial plane of the

observer) lines are, actually, some hyperbolic curves.

Distance-alleys: lines with corresponding points perceived

equidistant, are, actually, some hyperbolic curves. The parallel-alleys

are lying inside of distance-alleys and, for visual space, their difference

is small on the distances larger than 1.5 m.

Oblique effects: performance of certain tasks is worse when the

orientation of stimuli is oblique than in horizontal or vertical case.

Equidistant circles: egocentric distance is direction-dependent

(the points subject perceives equidistant lie on egg-like curves).
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• In Psychology, symbolic distance effect is that the brain compares

two concepts (or objects) with higher accuracy and faster reaction time

if they differ more on the relevant dimension.

• The subjective distance (or cognitive distance) is a mental

representation of actual distance molded by an individual’s social,

cultural and general life experiences.

Cognitive distance errors occur either because information about two

points is not coded/stored in the same branch of memory, or because of

errors in retrieval of this information. For example, the length of a

route with many turns and landmarks is usually overestimated.
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• The egocentric distance is the perceived absolute distance from the

self (observer or listener) to an object or a stimulus (say, sound

source). Usually, visual egocentric distance underestimates actual

physical distance to far objects, and overestimates it for near objects.

Exocentric distance is perceived relative distance between objects.

• Distance cues are cues used to estimate egocentric distance.

For a listener from a fixed location, main auditory distance cues

are: intensity (in open space it decreases of 5 dB for each doubling of

the distance; direct-to-reverberant energy ratio (in the presence of

sound reflecting surfaces), spectrum,binaural differences.
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Main visual distance cues include:

relative size, relative brightness, light and shade;

height in the visual field (in the case of flat surfaces lying below the

level of the eye, the more distant parts appear higher);

motion perspective (stationary objects appear, if observer moves, to

glide past);

interposition (one object partially occludes view of another);

binocular disparities, convergence accommodation;

aerial perspective, distance hazing (the objects in the distance

became bluer, paler, decreased in contrast, more fuzzy).
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REAL-WORLD BIOLOGICAL DISTANCES

1. Selected medical distances

2. Selected human and animal distances

3. Length magnitudes in Biology
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• Example of range distances (emphasizing a maximum distance) in

Biology: the dispersal distance refers to seed dispersal by pollination,

to natal dispersal, to breeding dispersal, to migration dispersal, etc.

• Examples of spacing distances (emphasizing a minimum distance) in

Biology: nearest-neighbor distance which an animal maintain, in

directional movement of large groups from its neighbors, and isolation

distance: a minimum one required (because of pollination) to be

maintained between variations of the same species of crop for the

purpose to keep seed pure (for example, 10 feet ≈ 3m for rice).
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• Selected medical distances

Inter-occlusal distance: in Dentistry, the distance between the

occluding surfaces of the maxillary and mandibular teeth.

Interproximal distance: spacing distance between adjacent teeth;

Inter-pediculate distance: the distance between the vertebral

pedicles as measured on the radiograph.

Source-skin distance: the distance from the focal spot on the target

of the x-ray tube to the skin of the subject.

Inter-aural distance: the distance between the ears.

Inter-ocular distance: the distance between the eyes.

Anogenital distance: the length of the perineum (region between

anus and genital area). For a male it is normally twice what it is for a

female; so, it measures physical masculinity.
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The sedimentation distance (or ESR, erythrocyte sedimentation

rate): the distance red blood cells travel in one hour in a sample of

blood as they settle to the bottom of a test tube. ESR indicates

inflammation and increases in many diseases.

The margin distance, in Oncology: the tumor-free surgical margin

(after formalin fixation) of tumor resection, done in order to prevent

local recurrence. Is margin 8 mm enough, instead of present 2-3 cm?

Main distances used in Ultrasound Biomicroscopy (esp. for glaucoma

treatment) are the angle-opening distance (anterior iris/corneal

endothelium) and the trabecular ciliary process distance (from a

particular point on trabecular meshwork to ciliary process).

Magnetic Resonance Imaging uses for cortical maps (outer layer

regions of cerebral hemispheres representing sensory inputs or motor

outputs) MRI distance map from gray/white matter interface and

cortical distance of activation locuses of spatially adjacent stimuli.
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• Distances between people (types of informal space, by Hall):

intimate distance for embracing or whispering (15.2 − 45 cm),

personal distance for conversations among friends (45 − 120 cm),

social distance for conversations among acquaintances (1.2 − 3.6 m),

public distance used for public speaking (over 3.6 m).

For an average westerner, personal space is

about 70 cm in front, 40 cm behind and 60 cm on either side.
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• Selected animal distances

The individual distance: the distance which an animal attempts to

maintain between itself and other animals.

The group distance: the distance which a group of animals attempts

to maintain between it and other groups.

The nearest-neighbor distance: about constant distance which an

animal maintain, in directional movement of large groups (schools of

fish or flocks of birds), from its immediate neighbors.

The distance-to-shore: the distance to the coastline used, for

example, to study clustering of whale strandings.

The escape distance: the distance on which the animal reacts on the

appearance of a predator or dominating animal of the same species.

Such flight initiation distance is shorter than related alert distance.
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The reaction distance: the distance on which the animal reacts to

the appearance of prey; catching distance: the distance on which the

predator can strike a prey.

The communication distance of animal vocalizations (incl. human

speech): maximal distance on which the receiver still can get the signal.

Example of simple distance estimation (for prey recognition) by

some animals: the velocity of the mantid’s head movement is kept

constant during peering, and so, the distance to the target is inversely

proportional to the velocity of the retinal image.

A distance pheromone is a soluble (for example, in the urine)

and/or evaporable substance emitted by an animal, as an olfactory

chemosensory cue, in order to send a message (on alarm, sex, food

trail, recognition, etc.) to other members of the same species. In

contrast, a contact pheromone is such insoluble non-evaporable

substance; it coats the animal’s body and is a contact cue.
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ORDERS OF LENGTH MAGNITUDE IN BIOLOGY (in meters)

10−10 = 1 angström: diameter of a typical atom, EM resolution limit;

10−9 = 1 nanometer: diameter of typical molecule;

2 × 10−9: diameter of the DNA helix;

1.1 × 10−8: diameter of prion (smallest self-replicating bio. entity);

2 × 10−8: smallest nanobes - filament structures in rocks/sediments -

(some see them as merely crystal growths since DNA still not found);

9 × 10−8: HIV virus; in general, known viruses range from 2 × 10−8

(adeno-associated virus) to 4× 10−7 (Mimivirus); there is a contoversy:

consider them as living (and classify as 4th domain, Asytota) or not;

10−7: size of chromosomes and maximum size of a particle that can fit

through a surgical mask;
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2 × 10−7: limit of resolution of the light microscope;

3.8 − 7.4 × 10−7: wavelength of visible (to humans) light, violet/red;

4 × 10−7: diameter of the smallest known archeaum;

10−6 = 1 micrometer (formerly, micron);

10−6 − 10−5: diameter of a typical bacterium; in general, 1.5 × 1−7 is

the diameter of smallest known (in non-dormant state) bacteria,

Micoplasma genitalium, while for largest one, it is 7.5 × 10−4;

7 × 10−6: diameter of the nucleus of a typical eukaryotic cell;

8 × 10−6: mean width of human hair (range: 1.8 × 10−6 − 18 × 10−6);

≈ 2 × 10−4: the lower limit of the human eye to discern an object;

5 × 10−4: diameter of a human ovum and typical Amoeba proteus;

5 × 10−3: length of average red ant; in general, insects range from

1.7 × 10−4 (Megaphragma caribea) to 3.6 × 10−1 (Pharnacia kirbyi);
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5.5, and 30.1: height of the tallest animal, the giraffe, and length of a

blue whale, the largest animal;

115.3: height of the world’s tallest tree, a sequoia Coast Redwood;

8 km: length of largest organism on Earth, sea grass plant Posidonia

oceanica near Balear Islands, 100,000 years old;

43 hectares: area of Pando, a clonal colony of Populus tremuloides

tree in U.S. state Utah, 80,000 years old;

5 × 104 = 50 km: the maximal distance on which the light of a match

can be seen; (at least 10 photons arrive on the retina during 0.1 s);

1.5 × 104–1.5 × 107: wavelength of audible sound (20 Hz - 20 kHz);

2, 000 km: length of Great Barrier Reef, largest known superorganism;

But, perhaps, it is Gaia?
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IMAGE DISTANCES

Image Processing treat signals such as photographs, video, or

tomographic output. In particular, Computer Graphics consists of

image synthesis from some abstract models, while Computer Vision

extracts some abstract information. From ≈ 2000: mainly digitally.

Computer graphics (and our brains) deals with vector graphics

images, i.e., those represented geometrically by curves, polygons, etc.

A raster graphics image (or digital image) is a representation of

2D image as a finite set of digital values, pixels, on square (Z2) grid.

Video and tomographic (MRI) images are 3D (2D plus time).

A digital binary image corresponds to only two values 0,1 with 1

being interpreted as logical “true” and displayed as black. A binary

continuous image is a compact subset of Euclidean space E
n, n=2, 3
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The gray-scale images can be seen as point-weighted binary images.

In general, a fuzzy set is a point-weighted set with weights (degrees

of membership. Histogram of a a gray-scale image gives the

frequency of brightness values in it.

Humans can differ between ≈ 350000 colors but only 30 gray-levels.

For color images, (RGB)-representation is most known, where space

coordinates R, G, B indicate red, green and blue level.

Among other color models (spaces) are: (CMY) cube (Cyan, Magenta,

Yellow colors), (HSL) cone (Hue-color type given as angle, Saturation

in %, Luminosity in %), and (YUV), (YIQ) used in PAL, NTSC TV.

(RGB) converts into gray-level luminance by 0.299R + 0.587G + 0.114B
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A color space is a 3-parameter description of colors. Exactly 3 are

needed because 3 kinds of receptors (cells on the retina) exist in the

human eye: for short, middle, long wavelengths, i.e., blue, green, red.

The basic assumption of Colorimetry is that the perceptual color space

admits a metric, the true color distance. It is expected to be locally

Euclidean, i.e., a Riemannian metric. Another assumption: there is

a continuous mapping from this metric to the one of light stimuli.

Probability-distance hypothesis: the probability with which one

stimulus is discriminated from another is a (continuously increasing)

function of some subjective quasi-metric between these stimuli.

Such uniform color scale, where equal distances in the color space

correspond to equal differences in color, is not obtained yet and

existing color distances are various approximations of it.
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Images are often represented by feature vectors, including color

histograms, color moments, textures, shape descriptors, etc.

Examples of feature (parameter) spaces are:

raw intensity (pixel values), edges (contours, boundaries, surfaces),

salient features (corners, line intersections, points of high curvature),

and statistical features (moment invariants, centroids). Typical

video features are in terms of overlapping frames and motions.

Image Retrieval (similarity search) consists of (as for DNA/protein

sequences, audio, text documents, etc.) finding images whose features

values are similar between them, or to given query or in given range.

Distances are, for Image Retrieval, between feature vectors of a query

and reference, and, for Image Processing, they are between

approximated and “true” digital images (to evaluate algorithms).
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There are two methods to compare images directly (without features):

intensity-based (color and texture histograms) and geometry-based

(shape representations as medial axis, skeletons).

Unprecise term shape is used for the extent (silhouette) of the object,

for its local geometry or geometrical pattern (conspicuous geometric

details, points, curves, etc.), or for that pattern modulo a similarity

transformation group (translations, rotations, and scalings).

Unprecise term texture means all what is left after color and shape

have been considered, or it is defined via structure and randomness.

The similarity between vector representations of images is measured

usually by lp-, weighted editing, probabilistic distances, etc.

The main distances used for compact subsets X and Y of Rn (usually,

n = 2, 3) or their digital versions are: Asplund, Shephard metrics,

vol(X∆Y ) and variations of the Hausdorff distance.
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• For a given 3D color space and a list of n colors, let (ci1, ci2, ci3) be the

representation of the i-th color of the list in this space.

For a color histogram x = (x1, . . . , xn), its average color is the vector

(x(1), x(2), x(3)), where x(j) =
∑n

i=1 xicij (for example, the average red,

blue and green values in (RGB)).

The average color distance between two color histograms is the

Euclidean distance of their average colors.

• Given an image (as a subset of R
2), let pi be the area percentage of it

occupied by the color ci. A color component of the image is (ci, pi).

The Ma-Deng-Manjunath distance between color components

(ci, pi) and (cj , pj) is |pi − pj | · d(ci, cj), where d(ci, cj) is the distance

between colors ci and cj in a given color space.
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• Given two color histograms x = (x1, . . . , xn) and y = (y1, . . . , yn) (with

xi, yi representing number of pixels in the bin i), their Swain-Ballard’s

histogram intersection quasi-distance is 1 −
P

n
i=1 min{xi,yi}

P

n
i=1 xi

.

For normalized histograms (total sum is 1) above quasi-distance is the

usual l1-metric
∑n

i=1 |xi − yi|. Their Rosenfeld-Kak’s normalized

cross correlation is a similarity
Pn

i=1 xi,yi
P

n
i=1 x2

i

.

• Given two color histograms x = (x1, . . . , xn) and y = (y1, . . . , yn)

(usually, n = 256 or n = 64) representing the color percentages of two

images, their histogram quadratic distance is Mahalonobis

distance, defined by
√

(x − y)T A(x − y), where A = ((aij)) is a

symmetric positive-definite matrix, and weight aij is some,

perceptually justified, similarity between colors i and j.

For example, aij = 1 − dij

max1≤p,q≤n dpq
, where dij is the Euclidean

distance between 3-vectors representing i and j in some color space.
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• Let f(x) and g(x) denote brightness values of two digital gray-scale

images f and g at the pixel x ∈ X , where X is a raster of pixels. Any

distance between point-weighted sets (X, f) and (X, g) can be applied

as gray-scale image distance between f and g. The main used ones:

RMS (root mean-square error)
(

1
|X|

∑

x∈X(f(x) − g(x))2
)

1
2

;

Signal-to-noise ratio SNR(f, g) =
( P

x∈X
g(x)2

P

x∈X(f(x)−g(x))2

)

1
2

;

Pixel misclassification error rate 1
|X| |{x ∈ X : f(x) 6= g(x)}|;

Frequency RMS
(

1
|U |2

∑

u∈U (F (u) − G(u))2
)

1
2

, where F , G are the

discrete Fourier transforms of f , g, and U is the frequency domain;

Sobolev norm of order δ error
(

1
|U |2

∑

u∈U (1 + |ηu|2)δ(F (u) − G(u))2
)

1
2

, where 0 < δ < 1 is usually
1
2 ), and ηu is the 2D frequency vector associated in U with position u.
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• Given a number r, 0 ≤ r < 1, the image compression Lp-metric is

the usual Lp-metric on Rn2

≥0 (the set of gray-scale images seen as n× n

matrices) with p being a solution of the equation r = p−1
2p−1 · e

p

2p−1 . So,

p = 1, 2, ∞ for, respectively, r = 0, r = 1
3e

2
3 ≈ 0.65, r ≥

√
e

2 ≈ 0.82.

Here r estimates informative (i.e., filled with non-zeros) part of the

image. It is a quality metric to select a lossy compression scheme.

• The digital volume metric (a digital analog of the Nikodym

metric) on bounded subsets (images) of Zn) is vol(A△B), where

vol(A) = |A| (number of pixels in A), and A△B is the symmetric

difference of sets A and B.
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Consider two binary images, seen as non-empty subsets A and B of a

finite metric space (say, a raster of pixels) (X, d).

• Their Baddeley’s p-th order mean Hausdorff distance is
(

1
|X|

∑

x∈X |d(x, A) − d(x, B)|p
)

1
p

, where d(x, A) = miny∈A d(x, y). For

p = ∞, it is proportional to usual Hausdorff metric.

• Their Dubuisson-Jain’s modified Hausdorff distance is

max
{

1
|A|

∑

x∈A d(x, B), 1
|B|

∑

x∈B d(x, A)
}

.

• If |A| = |B| = m, minf maxx∈A d(x, f(x)), where f is any bijective

mapping between A and B, is their bottleneck distance.

Variations of above distance are: minimum weight matching

minf

∑

x∈A d(x, f(x)), uniform matching

minf (maxx∈A d(x, f(x))-minx∈A d(x, f(x)) and minimum deviation

matching minf (maxx∈A d(x, f(x))- 1
|A|

∑

x∈A d(x, f(x)).
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Consider two two images, seen as non-empty compact subsets A and B

of a metric space (X, d).

• Their non-linear Hausdorff metric (or wave distance) is the

Hausdorff distance dHaus(A ∩ B, (A ∪ B)∗), where (A ∪ B)∗ is the

subset of A ∪ B which forms a closed contiguous region with A ∩ B,

and the distances between points are allowed to be measured only

along paths wholly in A ∪ B.

• Their Hausdorff distance up to G, for given group (G, ·, id) acting

on the Euclidean space En, is ming∈G dHaus(A, g(B)). Usually, G is the

group of all isometries or all translations of E
n.

118



• Their hyperbolic Hausdorff distance is the Hausdorff metric

between MAT (A) and MAT (BMAT(A)) of (X, dhyp), where the

hyperbolic distance dhyp(x, y) is max{0, dE(x′, y′) − (ry − rx)} for

elements x = (x′, rx) and y = (y′, ry) of X .

Here MAT (C) denotes, for any compact C ⊂ R
n, its Blum’s medial

axis transform, i.e., the subset of X = Rn × R≥0 of all pairs

x = (x′, rx) of the centers x′ and the radii rx of the maximal inscribed

(in C) l2-balls, in terms of the Euclidean distance dE in R
n.
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• Let (X, d) be a metric space, and let M ⊂ X . The medial axis of X is

the set MA(X) = {x ∈ X : |{m ∈ M : d(x, m) = d(x, M)}| ≥ 2}.
MA(X) consists of all points of boundaries of Voronoi regions

(zones of influence) of points of M . The skeleton Skel(X) of X is

the set of the centers of all balls, in terms of the distance d which are

inscribed in X and maximal, i.e., not belong to any other such ball.

The cut locus of X is the closure MA(X) of the medial axis.

In general, MA(X) ⊂ Skel(X) ⊂ MA(X).

The medial axis, skeleton, cut locus transforms are those three

point-weighted sets with d(x, M) being the weight of x ∈ X .

Usually, X ⊂ E
n, and M is the boundary of X . For 2D binary images

X , the skeleton is a curve, a single-pixel thin one, in digital case.

The exoskeleton of X is the skeleton of the complement of X , i.e., of

the background of the image for which X is the foreground.
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• Given a metric space (X, d) (X = Z2 or R2) and a binary image

M ⊂ X , the distance transform (or distance field, distance map)

is a function fM : X → R≥0, where fM (x) = d(x, M) = infu∈M d(x, u).

So, it can be seen as a gray-scale image where pixel gray-level is labeled

by its distance to the nearest pixel of the background.

The Voronoi surface of M is {(x, d(x, M)) : x ∈ X = R2}.

• Let see two digital images as binary m × n matrices x = ((xij)) and

y = ((yij)), where a pixel xij is black or white if it is 1 or 0, resp.

For each pixel xij , the fringe distance map to the nearest pixel of

opposite color DBW (xij) is the number of fringes expanded from (i, j)

(where each fringe consists of pixels that are equi-distant of (i, j)) until

the first fringe with a pixel of opposite color is reached. Then
∑

1≤i≤m

∑

1≤j≤n |xij − yij |(DBW (xij) + DBW (yij)) is pixel distance.
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• In any metric space (X, d), the point-set distance d(x, M) between

x ∈ X and M ⊂ X is infy∈M d(x, y).

The function fM (x) = d(x, M) is a (general) distance map.

• The set-set distance between two subsets A, B ⊂ X is infx∈A, d(x, B).

The Hausdorff metric is max{ddHaus(A, B), ddHaus(B, A)}, where

ddHaus(A, B)=maxx∈A miny∈B d(x, y) (for compact subsets A, B ⊂ X).

• If the boundary B(M) of the set M is defined, then

the signed distance function gM is defined as − infu∈B(M) d(x, u)

for x ∈ M and infu∈B(M) d(x, u), otherwise.

If M is a (closed and orientable) manifold in Rn, then gM is the

solution of the eikonal equation |∇g| = 1 for its gradient ∇.
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• The shape can be represented by a parameterized simple plane curve.

Let X = X(x(t)), Y = Y (y(t)) be two parameterized curves, where

x(t), y(t) are continuous on [0, 1] and x(0) = y(0) = 0, x(1) = y(1) = 1.

The most used parameterized curves distance is the minimum,

over all monotone increasing x(t), y(t), of maxt dE(X(x(t)), Y (y(t))).

It is Euclidean case of the dogkeeper distance which is, in turn, the

Fréchet metric for the case of curves.

• Consider a digital representation of curves. Fix r ≥ 1 and let

A = {a1, . . . , am}, B = {b1, . . . , bn} be finite ordered sets of consecutive

points on two closed curves. For any order-preserving correspondence f

between all points of A and B, the stretch s(ai, bj) of (ai, f(ai) = bj)

is r if either f(ai−1) = bj or f(ai) = bj−1, or zero, otherwise.

The elastic matching distance is minf

∑

(s(ai, bj) + d(ai, bj)), where

d(ai, bj) is the difference between the tangent angles of ai and bj . It is

a near-metric for some r: all d(x, y) ≤ C(d(x, z) + d(z, y)) for C ≥ 1.
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• For a plane polygon P , its turning function TP (s) is the angle

between the counterclockwise tangent and the x-axis as the function of

the arc length s. This function increases with each left hand turn and

decreases with right hand turns.

Given two polygons of equal perimeters, their turning function

distance is the Lp-metric between their turning functions.

• For a plane graph G = (V, E) and a measuring function f on its

vertex-set V (say, the distance from v ∈ V to the center of mass of V ),

the size function SG(x, y) on the points (x, y) ∈ R
2 is the number of

connected components of the restriction of G on vertices

{v ∈ V : f(v) ≤ y} containing a point v′ with f(v′) ≤ x.

Given two plane graphs with vertex-sets belonging to a raster R ⊂ Z
2,

their Uras-Verri’s size function distance is the normalized l1-metric

between their size functions over raster pixels.
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• The time series video distances are objective wavelet-based

spatial-temporal video quality metrics.

A video stream x is processed into time series x(t) (seen as a curve on

coordinate plane) which then (piecewise linearly) approximated by a

set of n contiguous line segments that can be defined by n + 1

endpoints (xi, x
′
i), 0 ≤ i ≤ n, on coordinate plane.

Wolf-Pinson’s distances between video streams x and y are:

1. Shape(x, y) =
∑n−1

i=0 |(x′
i+1 − x′

i) − (y′
i+1 − y′

i)|;

2. Offset(x, y) =
∑n−1

i=0 |x
′
i+1+x′

i

2 − y′
i+1+y′

i

2 |.
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AUDIO DISTANCES

Audio (speech, music, etc.) Signal Processing is the processing of analog

(continuous) or, mainly, digital representation of the air pressure waveform

of the sound. A sound spectrogram (or sonogram) is a visual 3D

representation of an acoustic signal. It is obtained either by series of

bandpass filters (an analog processing), or by application of the short-time

Fourier transform to the electronic analog of an acoustic wave.

Three axes represent time, frequency and intensity. Often this 3D curve is

reduced to 2D by indicating the intensity with, say, more thick lines.

Sound is called tone if it is periodic (the lowest fundamental frequency

plus its multiples, harmonics) and noise, otherwise. The frequency is

measured in cps (the number of complete cycles per second) or Hz (Herzs).

The range of audible sound frequencies to humans is 20Hz–20kHz.
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Decibel dB is the unit used to express relative strength of two signals.

Audio signal’s amplitude in dB is 20 log10
A(f)
A(f ′) = 10 log10

P (f)
P (f ′) , where f ′ ia

a reference signal selected to correspond 0 dB (threshold of human

hearing). The threshold of pain is about 120 − 140 dB.

Pitch and loudness are psycho-acoustic (auditory subjective) terms for

frequency and amplitude.

Mel scale is a pitch scale, corresponding to the auditory sensation of tone

height and based on mel, a unit of pitch. It is connected to frequency f Hz

scale by Mel(f) = 1127 ln(1 + f
700).

Bark scale is a scale of loudness scale: it range from 1 to 24 corresponding

to the first 24 critical bands of hearing (0, 100, . . . , 950, 12000, 15500 Hz).

Those bands correspond to spatial regions of the basilar membrane of the

inner ear, where oscillations produced by the sound activate the hair cells

and neurons. Bark(f) = 13 arctan(0.76f) + 3.5 arctan( f
0.75)2 in f kHz scale.
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Human phonation (speech, song, laughter) is controlled usually by vocal

tract (the throat and mouth) shape. This shape, i.e., the cross-sectional

profile of the tube from the closure in the glottis (the space between the

vocal cords) to the opening (lips), is represented by the cross-sectional area

function Area(x), where x is the distance to glottis.

The vocal tract acts as a resonator during vowel phonation, because it is

kept relatively open. Those resonances reinforce the source sound (ongoing

flow of lung air) at particular resonant frequencies (or formants) of the

vocal tract, producing peaks in the spectrum of the sound. Each vowel

has two characteristic formants, depending of the vertical and horizontal

position of the tongue in the mouth.

If the vocal tract is modeled as a sequence of concantenated tubes of

constant cross-sectional area of equal length, then ratios Area(xi+1)
Area(xi)

for

consecutive tubes can be computed. The log area ratio distance between

discrete spectra x and y of length n is ( 1
n

∑n
i=1 10(log10

Area(xi)
Area(yi)

)2)
1
2 .
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The spectrum of a sound is the distribution of magnitude (dB) of the

components of the wave. The spectral envelope is a smooth contour

connecting spectral peaks. Estimation of the spectral envelopes is based on

either LPC (linear predictive coding), or FTT (fast Fourier transform).

FTT maps time-domain functions into frequency-domain. The cepstrum

of the signal f(t) is FT (ln(FT (f(t) + 2πmi))), where m is the integer

needed to unwrap the angle or imaginary part of the complex log function.

(The complex and real cepstrum use, respectively, complex and real log

function. The real cepstrum uses only the magnitude of the original signal

f(t), while the complex cepstrum uses also phase of f(t).)

FFT performs Fourier transform on the signal and sample the discrete

transform output at the desired frequencies in mel scale.

129



Parameter-based distances used in recognition and processing of speech

data are usually derived by LPC, modeling speech spectrum as a linear

combination of the previous samples (as in autoregressive process).

Majority of distortion measures between sonograms are variations of

squared Euclidean distance (including Mahalanobis distance) and

probabilistic distances (f-divergence of Csizar, Chernoff distance,

generalized total variation metric).

The distances for sound processing below are between vectors x and y

representing two signals to compare. For recognition, they are a template

reference and input signal, while for noise reduction, they are (as in

Image Processing) original (reference) and distorted signal.

Often distances are calculated for small segments, between vectors

representing short-time spectra, and then averaged.
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• The RMS log spectral distance between discrete spectra x = (xi)

and y = (yi) is Euclidean distance
√

1
n

∑n
i=1(lnxi − ln yi)2.

The log area ratio distance LAR(x, y) between x and y is

( 1
n

∑n
i=1 10(log10

Area(xi)
Area(yi)

)2)
1
2 , where Area(zi) means cross-sectional

area of the segment of the vocal tract tube corresponding to zi.

• The segmented signal-to-noise ratio SNRseg(x, y) between signals

x = (xi) and y = (yi) is 10
m

∑M−1
m=0

(

log10

∑nm+n
i=nm+1

x2
i

(xi−yi)2

)

, where n is

the number of frames, and M is the number of segments.

Usual signal-to-noise ratio SNR(x, y) is 10 log10

Pn
i=1 x2

i
P

n
i=1(xi−yi)2

.

Also used, to compare waveforms x and y in time-domain, their

Czekanovski-Dice distance 1
n

∑n
i=1

(

1 − 2 min{xi,yi}
xi+yi

)

.
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• The Klatt slope metric between discrete spectra x = (xi) and

y = (yi) with n channel filters is (
∑n

i=1((xi+1 − xi) − (yi+1 − yi))
2)

1
2 .

• The Bark spectral distance is a perceptual distance

BSD(x, y) =
∑n

i=1(xi − yi)
2, i.e., is the squared Euclidean distance

between Bark spectra (xi) and (yi) of x and y, where i-th component

corresponds to i-th auditory critical band in Bark scale.

• The Itakura-Saito quasi-distance (or maximum likelihood

distance) IS(x, y) between LPC-derived spectral envelopes x = x(ω)

and y = y(ω) is 1
2π

∫ π

−π

(

ln x(w)
y(w) + y(w)

x(w) − 1
)

dw.

The cosh distance is defined by IS(x, y) + IS(y, x).O

• The log likelihood ratio quasi-distance (or Kullback-Leibler

distance) KL(x, y) between LPC-derived spectral envelopes x = x(ω)

and y = y(ω) is defined by 1
2π

∫ π

−π
x(w) ln x(w)

y(w)dw. The Jeffrey

divergence KL(x, y) + KL(y, x) is also used.
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“Quefrency”, “cepstrum”: anagrams of “frequency”, “spectrum”, resp

• The RMS log spectral distance (or root-mean-square distance)

LSD(x, y) between discrete spectra x = (xi) and y = (yi) is Euclidean

distance
√

1
n

∑n
i=1(ln xi − ln yi)2. The square of it, via cepstrum

representation lnx(ω) =
∑∞

j=−∞ cje
−ijω is the cepstral distance.

• The cepstral distance (or squared Euclidean cepstrum metric)

CEP (x, y) between LPC-derived spectral envelopes x = x(ω) and

y = y(ω) is 1
2π

∫ π

−π
(lnx(w) − ln y(w))2 dw =

∑∞
j=−∞(cj(x) − cj(y))2,

where cj(z) = 1
2π

∫ π

−π
eiwj ln |z(w)|dw is j-th cepstral (real) coefficient

of z derived by Fourier transform or LPC.

The quefrency-weighted cepstral distance (or weighted slope

distance) between x and y is
∑∞

i=−∞ i2(ci(x) − ci(y))2.

The Martin cepstrum distance between two AR (autoregressive)

models is, in terms of their cepstrums, (
∑∞

i=0 i(ci(x) − ci(y))2)
1
2 .
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• A phone is a sound segment that possess distinct acoustic properties,

the basis sound unit.

(Cf. phoneme, i.e., a family of phones that speakers usually hear as a

single sound; the number of phonemes range, among about 6000 spoken

now languages, from 11 in Rotokas to 112 in !Xóõ (languages spoken

by ≈ 4000 people in Papua New Guinea and Botswana, respectively.)

Two main classes of phone distance between phones x and y are:

Spectrogram-based distances: physical-acoustic distortion

measures between the sound spectrograms of x and y;

Feature-based phone distances: usually Manhattan distance
∑

i |xi − yi| between vectors (xi) and (yi) representing phones x and y

with respect to given inventory of phonetic features (for example,

nasality, stricture, palatalization, rounding, sillability).
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• The Laver consonant distance refers, for 22 consonantal phonemes

of English, the improbability of confusing them, developed by Laver,

1994, from subjective auditory impressions.

The smallest distance, 15%, is between [p] and [k], the largest one,

95%, is, for example, between [p] and [z]. Laver also proposed a

quasi-distance based on the likehood that one consonant will be

misheard as another by an automatic speech-recognition system.

• Liljencrans and Lindlom, 1972, developed a vowel space of 14 vowels.

Each vowel, after a procedure maximizing contrast among them, is

represented by a pair (x, y) of resonant frequencies of the vocal tract

(1st and 2nd formants) in linear mel units with 350 ≤ x ≤ 850 and

800 ≤ y ≤ 1700). Higher x values correspond to lower vowels and

higher y values to less rounded or farther front vowels. For example,

[u], [a], [i] are represented by (350, 800), (850, 1150), (350, 1700), resp.
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• The phonetic word distance between two words x and y is the

cost-based editing metric (for phone sustitutions and indels).

A word is seen as a string of phones. Given a phone distance r(u, v)

on the International Phonetic Alphabet with additional phone 0 (the

silence), the cost of substitution of phone u by v is r(u, v), while r(u, 0)

is the cost of insertion or deletion of u.

• The linguistic distance (or dialectology distance) between

language varieties X and Y is the mean, for fixed sample S of notions,

phonetic word distance between cognate (i.e., having the same

meaning) words sX and sY , representing the same notion s ∈ S in X

and Y , respectively.

• Stover’s distance between phrases with the same key word is the

sum
∑

−n≤i≤+n aixi, where 0 < ai < 1 and xi is the proportion of

non-mathched words between the phrases within a moving window.
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• Pitch is a subjective correlate of the fundamental frequency linearly

ordered collection of pitches (notes).

A pitch distance (or musical distance) is the size of the section of

the linearly-perceived pitch-continuum bounded by those two pitches,

as modeled in a given scale. The pitch distance between two successive

notes in a scale is called a scale step.

In Western music now, the most used one is the chromatic scale

(octave of 12 notes) of equal temperament, i.e., divided into 12

equal steps with the ratio, between any two adjacent frequencies, being
12
√

2. The scale step here is a semitone, i.e., the distance between two

adjacent keys (black and white) on a piano. The distance between

notes whose frequencies are f1 and f2 is 12 log2(
f1

f2
) semitones.

A MIDI (Musical Instrument Digital Interface) number of fundamental

frequency f is defined by p(f) = 69 + 12 log2
f

440 . The distance between

notes, in terms of MIDI numbers, is natural metric |m(f1) − m(f2)|.
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• A rhythm timeline (music pattern) is represented, besides standard

music notation, as binary vector, pitch vector, pitch difference vector,

chronotonic histogram or, for example as:

1. a inter-onset interval vector t = (t1, . . . , tn) of n time intervals

between consecutive onsets.

2. a rhythm difference vector r = (r1, . . . , rn−1), where ri = ti+1

ti
.

Examples of general distances between rhythms are Hamming

distance, swap metric, Earth Mover distance between their given

vector representations. The Euclidean interval vector distance is

the Euclidean distance between two inter-onset interval vectors.

Coyle-Shmulevich interval-ratio distance is 1 − n +
∑n−1

i=1
max{ri,r

′
i}

min{ri,r′
i
} ,

where r and r′ are rhythm difference vectors of two rhythms.
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