
Some problems, I care most
Michel Deza

Ecole Normale Superieure, Paris

– p. 1/87



Ten problems

I. Perfect matroid designs

II. a) Infinite hypermetrics
b) l1-embedding of complexes

III. a) Fullerenes: IQ, Skyrmions, viruses
b) Space fullerenes

IV. a) Zigzags and railroads in fullerenes
b) Zigzags and Lins triality of maps

V. a) Three classes of exotic plane graphs
b) Ambiguous boundaries of polycycles

VI. Extreme physical distances
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I. Perfect

Matroid Designs

P.J.Cameron and M.Deza Designs and Matroids, in
Handbook of Combinatorial Designs, 2nd ed. by C. J.
Colbourn and J. Dinitz, Discrete Math. and Appl. 42,
Chapman and Hall/CRC, 2006, Ch. VII.10 (847–851).
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Perfect Matroid Designs

A perfect matroid design, or PMD, is a matroid M ,
of rank r such that all flats of rank i, 0 ≤ i ≤ r, have the
same cardinality fi.
The tuple (f0, f1, . . . , fr) is the type of M .

The geometrisation of a PMD of type (f0, fi, . . . , fr) is a
PMD of type (f ′

0, f
′
1, . . . , f

′
r), where

f ′
i = (fi − f0)/(f1 − f0). In particular, f ′

0 = 0, f1 = 1.

PMDs are (D., 1978) the extremal case for the families
A of k-subsets of given v-set intersecting pairwisely in
l0, l1 . . . , lt elements. Namely, for v > v0(k), it holds:

|A| ≤
∏

0≤i≤t

v − li
k − li

with equality if and only if A is the

hyperplane family of a PMD with type (l0, l1, . . . , lt, k, v).
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Known necessary conditions for PMD

If there exists a PMD of type (0, 1, f2, . . . , fr), then:

1.
∏

i≤k≤j−1

fl − fk

fj − fk

is a non-negative integer for

0 ≤ i < j ≤ l ≤ r;

2. fi − fi−1 divides fi+1 − fi for 2 ≤ i ≤ r − 1;

3. (fi − fi−1)
2 ≤ (fi+1 − fi)(fi−1 − fi−2) for 1 ≤ i ≤ r − 1.

The above necessary conditions are not sufficient;
for example, (R. M. Wilson), no PMD of type (0, 1, 3, 7, 43) or
(0, 1, 3, 19, 307) exists.
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All known geometric PMDs

They are truncations of the following 5 examples:

Free matroids, with fi = i for all i.

Finite projective spaces over a field GFq, with fi = qi−1
q−1 .

Finite affine spaces: the points are the vectors in a
vector space of rank r over GFq and fi = qi.

Steiner systems S(t, k, v): the hyperplanes are the
blocks. These PMDs have rank t + 1 and fi = i for i < t,
ft = k, ft+1 = v.

Triffids (Hall triple systems): of type (0, 1, 3, 9, 3n).
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Triffids and their algebraic siblings

So, a triffid is any PMD of rank 4 with type (0, 1, 3, 9, 3n).
Those PMDs are equivalent to each of following structures:

Hall triple system: a Steiner triple system S(2, 3, 3n) on
E, |E| = 3n, such that, for any point a ∈ E, there exists
an involution for which a is unique fixed point.

Finite exponent 3 commutative Moufang loop: a finite
commutative loop (L, ·), such that, for any x, y, z ∈ L,
it holds (x · x) · x = 1 and (x · x) · (x · z) = (x · y) · (x · z).

Distributive Manin quasigroup: a groupoid (Q, ◦), such
that all translations are automorphisms and any relation
x ◦ y = z is preserved under permutation of the variables

Restricted Fischer pair (G,F ): a group G having
commutative center {1} and generated by a subset F

with x2 = 1 = (xy)3 and xyx ∈ F (for any x, y ∈ F ).
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The problem of PMD existence

To decide the wide gap between known examples of
PMD and necessary conditions. For example, it is not
known whether there is a PMD of type (0, 1, 3, 13, 183),
(0, 1, 3, 13, 313), or (0, 1, 3, 15, 183).

U. S. R. Murty, H. P. Young and J. Edmonds,
Equicardinal matroids and matroid-designs, in Proc.
2nd Chapel Hill Conference on Combinatorial
Structures and Applications, 498–547, Gordon and
Breach, New York, 1970.

M.Deza and G. Sabidussi, Combinatorial structures
arising from commutative Moufang loops, Chapter VI in
Quasigroups and Loops: Theory and Applications, ed.
by O.Chein et al., Sigma Series in Pure Mathematics 8,
151–160, Heldermann, Berlin, 1990.
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IIa. Hypermetrics
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Hypermetric inequalities

If b ∈ Z
n,

∑n
i=1 bi = 1, then hypermetric inequality is:

H(b)d =
∑

1≤i<j≤n

bibjd(i, j) ≤ 0 .

If b = (1, 1,−1, 0, . . . , 0), then H(b) is triangle inequality.

If b = (1, 1, 1,−1,−1, 0, . . . , 0), then H(b) is pentagonal
inequality.

The hypermetric cone HY Pn is the set of all d
such that H(b)d ≤ 0 for all b.

dimHY Pn =
(

n
2

)

.

HY Pn is defined by an infinite set of inequalities,
but it is polyhedral (D.-Grishukhin-Laurent, 1993).
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Three cones

A cut semi-metric on {1, . . . , n}, for S ⊂ {0, . . . , n}, is:

δS(i, j) =

{

1 if |S ∩ {i, j}| = 1,

0 otherwise .

The cut cone CUTn is generated by all δS and metric cone
METn is generated by all n-vertex semi-metrics. D., 1960:

● CUT ⊂ HY Pn ⊂ METn for all n ≥ 3;

● HY Pn = METn if and only if n = 3, 4;

● CUTn = HY Pn if and only if 3 ≤ n ≤ 6.

The facets (3
(

n
3

)

, 1 orbit) of METn and extreme rays
(2n−1 − 1, ⌊n

2 ⌋ orbits) of CUTn are simple. But direct
computation of HY Pn, n ≥ 7, is too hard.
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The coneHY P7

D. and Dutour, 2004: HY P7 has 3773 facets in 14 orbits
below and 31170 extreme rays in 29 orbits (incl. 3 of CUT7).

(1 ,1 ,−1 ,0 ,0 ,0 ,0 ) (1 ,1 ,1 ,−1 ,−1 ,0 ,0 )
(1 ,1 ,1 ,1 ,−1 ,−2 ,0 ) (2 ,1 ,1 ,−1 ,−1 ,−1 ,0 )
(1 ,1 ,1 ,1 ,−1 ,−1 ,−1 ) (2 ,2 ,1 ,−1 ,−1 ,−1 ,−1 )
(1 ,1 ,1 ,1 ,1 ,−2 ,−2 ) (2 ,1 ,1 ,1 ,−1 ,−1 ,−2 )
(3 ,1 ,1 ,−1 ,−1 ,−1 ,−1 ) (1 ,1 ,1 ,1 ,1 ,−1 ,−3 )
(2 ,2 ,1 ,1 ,−1 ,−1 ,−3 ) (3 ,1 ,1 ,1 ,−1 ,−2 ,−2 )
(3 ,2 ,1 ,−1 ,−1 ,−1 ,−2 ) (2 ,1 ,1 ,1 ,1 ,−2 ,−3 )

First 10 orbits above are also of facets of CUT7 (among its
38780 facets in 36 orbits).
MET7 has 105 facets (1 orbit) and 55226 extreme rays (46).
HY P8 has ≥ 7126560 extreme rays in ≥ 381 orbits.
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Finite hypermetrics

Assouad and D., 1979: If d ∈ METn is rationally-valued,
then d ∈ CUTn iff λd, for a scale λ, is an isometric
subspace of path-metric of a hypercube graph Hm.

Assouad, 1982: d ∈ HY Pn iff d2 is isometric subspace
of Euclidean space (Rn−1, l2), generating a lattice.
If d = dpath(G) of n-vertex graph G, then d ∈ HY Pn iff
above lattice is a root lattice.

If d = dpath(G) of n-vertex graph G, then d ∈ METn.
D.-Terwilliger, 1987: dpath(G) ∈ HY Pn iff 2d is an
isometric subspace of a direct product of copies of 1

2Hm

(m ≥ 7), Km×2 (m ≥ 7) and Gosset graphs G56.
Shpectorov; D. and Grishukhin, 1993: dpath(G) ∈ CUTn

iff 2dpath(G) is an isometric subspace of a direct product
of copies of 1

2Hm and Km×2 only.
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Problem: infinite hypermetrics

Wanted: infinitary version of above theory.
Elements of HY P∞ correspond to "towers of lattices"
since any finite sub-hypermetric correspond to a lattice.
Example of difficulties: garland of hyperoctahedra
Km×2, m → ∞, is not scale-isometric subspace of H∞

(even of Z∞), while any its n-points metric subspace
belongs to CUTn (equivalently, l1-embeddable).

Some inf. hypermetrics are not Lipschitz-embeddable
into l1, while any their finite subspace is l1-embeddable.
Arora, Lovasz et al, 2005, using D-Maehara, 1990:
for every n ≥ 2, some n-points hypermetrics reguires
distortion at least of order (logn)0.6 for embedding into l1.

If (X, d) is a finite hypermetric space, then (X, d2) is an
isometric subspace of an Euclidean sphere (Sm, l2).
For which infinite hypermetrics it holds? – p. 14/87



A Banach space is isometric to a subspace of a Hilbert
space if and only if it satisfies the parallelogram law.
But, Neyman, 1984: any lp with p 6= 2 can not be
characterized by a finite number of eq. or inequalities.
But all ≤ n-points l1-metrics are: < ∞ linear inequalities.

Mendel-Naor, 2006: metric cotype 2, first non-trivial
non-linear (on squared distances) inequality in l1.

More information on hypermetrics, l1-embedding and
scale hypercube embedding are in books:
M.Deza and M.Laurent, Geomety of Cuts and Metrics,
Springer-Verlag, 1997, and its follow-up
M.Deza, V.P.Grishukhin and M.Shtogrin, Scale
isometric polytopal graphs in hypercubes and cubic
lattices, Imperial College Press, World Scientific, 2004.
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IIb. l1-embedding

of complexes

M.Deza, M.Dutour and S.Shpectorov, Isometric embedding
of Wythoff polytopes into cubes and half-cubes, in
Proc. COE Workshop on Sphere Packings (Fukuoka 2004),
MHF Lecture Notes 2004-1, ed. by E.Bannai (2005) 55–70.
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l1-embedding of graphs

A metric d is l1-embeddable if it embeds isometrically
into the metric space lk1 for some dimension k.

A n-points metric d is l1-embeddable iff d ∈ CUTn

(The path-metric dG of) a finite graph G is
l1-embeddable iff exists its scale λ embedding into a
hypercube Hm, i.e., a vertex mapping φ : G → {0, 1}m,
such that d(φ(x), φ(y)) = λdG(x, y).

Scale 1 embedding is isometric hypercube embedding,
scale 2 embedding is isometric half-cube embedding.

Hm embeds in J(2m,m) and J(m, s) embeds in 1
2Hm.

The Johnson graph J(m, s) is formed by all s-subsets of
{1, . . . ,m} with subsets S, T being adjacent if |S∆T | = 2.

A complex X embeds into Hm or 1
2Hm if its skeleton

embeds into hypercube Hm with scale 1 or 2. – p. 17/87



Regular (convex) polytopes
A regular polytope is a polytope, whose symmetry group
acts transitively on its set of flags. The list consists of:

regular polytope group
regular polygon Pn I2(n)

Icosahedron and Dodecahedron H3

600-cell and 120-cell H4

24-cell F4

γd(hypercube) and βd(cross-polytope) Bd

αd(simplex) Ad=Sym(d + 1)

There are 3 regular tilings of Euclidean plane ((36), (63),
(44) = δ2 = Z2) and infinity of (pq) on hyperbolic plane H

2.
All non-polytopal regular tilings of dimension d ≥ 3, are:
Euclidean δd = Zd, 2 sporadic tilings of R

4 and
15, 7, 5 tilings of H

d with d = 3, 4, 5, respectively.
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l1-embedding of regular tilings

D. and Shtogrin, 2000: all l1-embeddable (skeletons of)
d-dimensional (d ≥ 2) regular tilings and honeycombs
are: all with d ≤ 3, αd, βd and all 13 bipartite ones:
γd, δd and 8, 2, 1 hyperbolic tilings with d = 4, 5, 6.

So, for d > 3: all 3 series of polytopes (on S
d), the

unique series on R
d and all 11 bipartite tilings of H

d.

Four infinite series δd, γd, αd and βd embed into Zd, Hd,
1
2Hd+1 and (with scale 2t, for t = ⌈d

4⌉) H4t, respectively.

Existence of an Hadamard matrix and a finite projective
plane have equivalents in terms of variety of those
embeddings of βd and αd, respectively.

The bipartite tilings are those with cells δm, γm and (63);
All 11 such hyperbolic tilings embed into Z∞.
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Wythoff construction

For a (d − 1)-dimensional complex K, a flag is a
sequence (fi) of faces with f0 ⊂ f1 ⊂ · · · ⊂ fu.

The type of a flag is the sequence dim(fi).

Given a non-empty subset S of {0, . . . , d − 1}, the
Wythoff (kaleidoscope) construction is a complex P (S),
whose vertex-set is the set of flags with fixed type S.

The other faces of K(S) are expressed in terms of flags
of the original complex K.
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Formalism of faces of WithoffianK(S)

Set Ω = {∅ 6= V ⊂ {0, . . . , d}} and fix an S ∈ Ω.
For subsets U,U ′ ∈ Ω, we say that U ′ blocks U (from S)
if, for all u ∈ U and v ∈ S, there is an u′ ∈ U ′ with
u ≤ u′ ≤ v or u ≥ u′ ≥ v. This defines a binary relation
on Ω (i.e., on subsets of {0, . . . , d}), denoted by U ′ ≤ U .

Write U ′ ∼ U , if U ′ ≤ U and U ≤ U ′, and
write U ′ < U if U ′ ≤ U and U 6≤ U ′.

Clearly, ∼ is reflexive and transitive, i.e., an
equivalence. [U ] is equivalence class containing U .

Minimal elements of equivalence classes are types of
faces of K(S); vertices correspond to type S,
edges to "next closest" type S′ with S < S′, etc.
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Properties of Wythoff construction

If K is a (d − 1)-dimensional complex, then:

K({0}) = K and K({d − 1}) = K∗ (dual complex).

In general, K(S) = K∗({d − 1 − s : s ∈ S}).
K({1}) is median complex and K({0, 1}) is (vertex)
truncated complex.

K admits at most 2d − 1 different Wythoff constructions.

K({0, . . . , d − 1}) = K∗({0, . . . , d − 1}) is order complex.
Its skeleton is bipartite and the vertices are full flags.
Edges are full (maximal) flags minus some face. In
general, flags with i faces correspond to faces of
dimension d − i.
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Archimedean polytopes

An Archimedean d-polytope is a d-polytope, whose
symmetry group acts transitively on its set of vertices
and whose facets are Archimedean (d − 1)-polytopes.

They are classified in dimension 2 (reg. poygons), 3
(Kepler: 5 (regular)+ 13 + m-prisms + m-antiprisms)
and 4 (Conway and Guy).

If K is a regular polytope, then K(S) is an Archimedean
polytope.

Since K(S) = K∗({d− 1− s : s ∈ S}), it suffices consider,
for any non-empty subset S of {0, . . . , d − 1}, only
αd(S), βd(S) and Ico(S), 24-cell(S), 600-cell(S).

A complex X embeds into Hm or 1
2Hm if its skeleton

embeds into hypercube Hm with scale 1 or 2.
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Arch. l1-Wythoffians with d = 3

(non-regular) l1-Wythoffian n embedding

(Cuboctahedron)∗ = α3({0, 2})∗ 14 H4

Rhombicuboctahedron= β3({0, 2}) 24 J(10, 5)

tr Octahedron= α3({0, 1, 2}) = β3({0, 1}) 24 H6

tr Cuboctahedron= β3({0, 1, 2}) 48 H9

tr Icosidodecahedron= Ico({0, 1, 2}) 120 H15

Rhombicosidodecahedron= Ico({0, 2}) 60 1
2H16

(Icosidodecahedron)∗ = Ico({1})∗ 32 H6

(tr Icosahedron)∗ = Ico({0, 1})∗ 32 1
2H10

(tr Dodecahedron)∗ = Ico({1, 2})∗ 32 1
2H26

(tr Cube)∗ = β3({1, 2}∗ 14 J(12, 6)

(tr Tetrahedron)∗ = α3({0, 1})∗ 8 1
2H7
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l1-Wythoffians of regular d-polytopes

Conjecture: all such non-regular ones are 9 sporadic ones
(600-cell({0, 1, 2, 3}), 24-cell({0, 1, 2, 3}), Ico({0, 1, 2});
Ico({0, 2}), Ico({1})∗, Ico({0, 1})∗, Ico({1, 2})∗, β3({1, 2}∗,
α3({0, 1})∗) and 6 following infinite series for d ≥ 2.

1. αd({k}) = J(d + 1, k + 1) for k = 1, . . . , d − 2.

2. αd({0, d − 1})∗ = V or(Ad) → Hd+1 (all but 2 antipods).

3. αd({0, . . . , d − 1}) = V or(A∗
d) → H(d+1

2 ) (permutahedron).

Moreover, V o(Ad) → Zd+1 and V o(A∗
d) → Z(d+1

2 ).

4. βd({0, . . . , d − 1}) → Hd2 (zonotope, not Voronoi).

5. βd({0, . . . , d − 2}) → Hd(d−1) (idem, for d ≥ 4).

6. βd({0, d − 1}) → Hm with scale 2t ≥ 2⌈d
4⌉.
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Cayley graph construction
If a group G is generated by g1,. . . ,gt, then its Cayley
graph is the graph with vertex-set G and edge-set:

(g, ggi) for g ∈ G and 1 ≤ i ≤ t.

G is vertex-transitive; its path-distance is length of xy−1.

If P is a regular d-polytope, then its symmetry group is
a Coxeter group with canonical generators g0,. . . , gd−1

and its order complex is:

P ({0, . . . , d − 1}) = Cayley(G, g0, . . . , gd−1).

Cayley(G, g0, . . . , gn−1) embeds into an Hm (moreover, a
zonotope) for any finite Coxeter group G.

– p. 26/87



All Arch. order complexes are zonotopes

K({0, . . . , d − 1}) = K ∗ ({0, . . . , d − 1}) G n embedding

permutahedron Ad (d + 1)! H(d+1

2 )

αd({0, . . . , d − 1}) = V or(A∗

d)

βd({0, . . . , d − 1}) (not Voronoi), Bd 2dd! Hd2

starting with tr Cuboctahedron

Ico({0, 1, 2}) = tr Icosidodecahedron H3 120 H15

24-cell({0, 1, 2, 3}) F4 1152 H24

600-cell({0, 1, 2, 3}) H4 14400 H60

E6({0, 1, . . . , 5}) E6 51840 H36

E7({0, 1, . . . , 6}) E7 2903040 H63

E8({0, 1, . . . , 7}) E8 696729600 H120

I2(p)({0, 1}) (p-gon) I2(p) 2p Hp

Dd({0, 1, . . . , d − 1})(half−d−cube) Dd 2d−1d! Hd(d−1)
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IIIa. Fullerenes: IQ,

Skyrmions and viruses

M.Deza, Fullerenes: applications and generalizations,
Preprint 2005-38, Preprint Series of Com2MaC,
Pohang University of Science and Technology, 2005.
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Fullerenes

A fullerene Fn is polyhedron (putative carbon molecule)
with n 3-valent vertices and only pentagonal and
hexagonal faces. Clearly, p5 = 12 and p6 = n

2 − 10.

Fn exist for all even n ≥ 20 except n = 22.
1, 1, 1, 2, 5 . . . , 1812, . . . 214127713, . . . isomers Fn, for n =
20, 24, 26, 28, 30 . . . , 60, . . . , 200, . . . .

Thurston,1998, implies: no. of Fn grows as n9.

Conjecture (Goldberg, 1933):
The polyhedron with m ≥ 12 faces having maximal
IQ = 36π V 2

S3 is a fullerene (called “medial polyhedron”).
IQ is abbreviation for Isoperimetric Quotient.
For solids (Schwarz,1890), it holds:
IQ = 36π V 2

S3 ≤ 1 with equality only for sphere.
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Skyrmions and fullerenes

Conjecture (Battye-Sutcliffe, 2002):
any minimal energy Skyrmion (baryonic density isosurface
for single soliton solution) with baryonic number (the
number of nucleons) B ≥ 7 is a fullerene F4B−8.

Conjecture (true for B < 107; open from (b, a) = (1, 4)):
there exist icosahedral fullerene as a minimal energy
Skyrmion for any B = 5(a2 + ab + b2) + 2 with integers
0 ≤ b < a, gcd(a, b) = 1 (not any icosahedral Skyrmion
has minimal energy).

Skyrme, 1962, model is a Lagrangian approximating QCD
(a gauge theory based on SU(3) group). Skyrmions are
special topological solitons used to model baryons.
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Icosahedral viruses as dualFn(I), Fn(Ih)

Hippocates of Kos, circa 400 BC: most diseases come
from icosahedra (water) excess in body.

Watson–Crick, 1956: viruses are either spheres or rods

Caspar- Klug, Nobel prize 1982: virion capsomers are
10T + 2 vertices of icosadeltahedron F ∗

20T , where
T = a2 + ab + b2 is triangulation number, since
capsomers organized in min. number T of locations
with non-eqv. bonding. Also, I, Ih generate maximal
enclosed volume for given subunit size.
But modern computers cannot evaluate capsid free
energy by all-atom simulations. Is virion minimizes free
energy and/or IQ-like functional on capsid?

Janner, from 2002: more general icosahedral polyhedra
in the lattice generated by 6 (suitably scaled) vectors
from Icosahedron center to its vertices. – p. 31/87



Capsids of icosahedral viruses

(a, b) T = a2 + ab + b2 Fullerene Examples of viruses

(1, 0) 1 F ∗

20
(Ih) B19 parvovirus, cowpea mosaic virus

(1, 1) 3 C∗

60
(Ih) picornavirus, turnip yellow mosaic virus

(2, 0) 4 C∗

80
(Ih) human hepatitis B, Semliki Forest virus

(2, 1) 7l C∗

140
(I)laevo HK97, rabbit papilloma virus, Λ-like viruses

(1, 2) 7d C∗

140(I)dextro polyoma (human wart) virus, SV40

(3, 1) 13l C∗

260
(I)laevo rotavirus

(1, 3) 13d C∗

260
(I)dextro infectious bursal disease virus

(4, 0) 16 C∗

320(Ih) herpes virus, varicella

(5, 0) 25 C∗

500
(Ih) adenovirus, phage PRD1

(3, 3) 27 C∗

540
(I)h pseudomonas phage phiKZ

(6, 0) 36 C∗

720
(Ih) infectious canine hepatitis virus, HTLV1

(7, 7) 147 C∗

2940
(Ih) Chilo iridescent iridovirus (outer shell)

(7, 8) 169d C∗

3380(I)dextro Algal chlorella virus PBCV1 (outer shell)

(7, 10) 219d? C∗

4380
(I) Algal virus PpV01
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Examples

Satellite, T = 1, of TMV,
helical Tobacco Mosaic virus

1st discovered (Ivanovski,
1892), 1st seen (1930, EM)

Foot-and-Mouth virus,
T = 3
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Human and simian papilloma viruses

Polyoma virus,
T = 7d

Simian virus 40,
T = 7d
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SpecialI-viruses

Archeal virus STIV, T = 31
Algal chlorella virus PBCV1
(4th: ≃ 331.000 bp), T = 169

Sericesthis iridescent virus, T = 72 + 42 + 62 = 127?

Tipula iridescent virus, T = 102 + 40 + 42 = 156?
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HIV conic fullerene; which Fn(G) it is?

Capsid core Shape (spikes): T ≃ 71?
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IIIb. Space fullerenes
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Space fullerenes

4 Frank-Kasper polyhedra (isolated-hexagon
fullerenes): F20(Ih), F24(D6d), F26(D3h), F28(Td)

FK space fullerene: a 4-valent tiling of E3 by them.
Space fullerene: a 4-valent tiling of E3 by any fullerenes;
D.-Shtogrin, 1999; unique known non-FK example.

FK space fullerenes occur in:
(> 20) ordered tetrahedrally closed-packed (t.c.p.)
phases of metallic alloys with cells being atoms.
Clathrate “ice-like” hydrates: cells are sites of solutes
(Cl, Br, . . . ), vertices are H2O, hydrogen bonds.
Hypothetical silicates (zeolites); cells are H2O,
vertices are tetrahedra SiO4 or SiAlO4.
Soap froths (foams, liquid crystals).
Better solution to the Kelvin problem.
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Main examples of FK space fullerenes

t.c.p. exp. alloy exp. clathrate # 20 # 24 # 26 # 28

A15 Cr3.Si I:4Cl2.7H2O 1 3 0 0

C15 MgCu2 II:CHCl3.17H2O 2 0 0 1

Z Zr4Al3 III:Br2.86H2O 3 2 2 0

σ Cr46.F e54 5 8 2 0

µ Mo6Co7 7 2 2 2

δ MoNi 6 5 2 1

C V2(Co, Si)3 15 2 2 6

T Mg32(Zn, Al)49 TI (Bergman) 49 6 6 20

SM TP (Sadoc-Mossieri) 49 9 0 26
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Frank-Kasper polyhedra and A15

Mean face-size of all known FK space fullerenes is in
[5 + 1

10(C15), 5 + 1
9(A15)]. Closer to impossible 5 (120-cell on

3-sphere) means energetically competitive with diamond.
A15: horizontal parallel lines in hexagons graph.

– p. 40/87



Non-FK space fullerene: is it unique?
The only known which is not by F20, F24, F26 and F28(Td).
By F20, F24 and its elongation F36(D6h) in ratio 7 : 2 : 1;
so, best known mean face-size 5.091 < 5.1(C15).

All space fullerenes with at most 7 kinds of vertices are:
A15, C15, Z, σ and this one (Delgado, O’Keeffe; 3,3,5,7,7).
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IVa. Zigzags and railroads

in fullerenes

M.Deza, M.Dutour and P.W.Fowler,
Zigzags, Railroads, and Knots in Fullerenes, J. Chemical
Information and Computer Science, 44 (2004) 1282–1293.
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Zigzags

A plane graph G
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Zigzags

take two edges
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Zigzags

Continue it left−right alternatively ....
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Zigzags

... until we come back.
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Zigzags

A self−intersecting zigzag
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Zigzags

A double covering of 18 edges: 10+10+16

z=10 ,  162z−vector 2,0
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z-knotted fullerenes

A zigzag in a 3-valent plane graph G is a circuit such
that any 2, but not 3 edges belong to the same face.

Zigzags can self-intersect in the same or opposite
direction.

Zigzags doubly cover edge-set of G.

A graph is z-knotted if there is unique zigzag.

What is proportion of z-knotted fullerenes among all Fn?
Schaeffer and Zinn-Justin, 2004, implies: for any m,
the proportion, among 3-valent n-vertex plane graphs
of those having ≤ m zigzags goes to 0 with n → ∞.

Conjecture: all z-knotted fullerenes are chiral and their
symmetries are all possible (among 28 groups for them)
pure rotation groups: C1, C2, C3, D3, D5.
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Railroads

A railroad in a 3-valent plane graph is a circuit of hexagonal
faces, such that any of them is adjacent to its neighbors on
opposite faces. Any railroad is bordered by two zigzags.

414(D3h) 442(C2v)

Railroads (as zigzags) can self-intersect (doubly or triply).
A 3-valent plane graph is tight if it has no railroad.
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First IPR fullerene with self-int. railroad

F96(D6d); realizes projection of Conway knot (4 × 6)∗
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Fullerene with triply intersecting railroad

Conjecture: above F176(C3v) is smallest such fullerene
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Some special fullerenes

30, D5h

all 6-gons
in railroad
(unique)

36,D6h 38, C3v

all 5-, 6-
in rings
(unique)

48, D6d

all 5-gons
in alt. ring
(unique)

2nd one is the case t = 1 of infinite series F24+12t(D6d,h),
which are only ones with 5-gons organized in two 6-rings.

It forms, with F20 and F24, best known space fullerene tiling.

The skeleton of its dual is an isometric subgraph of 1
2H8.
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Tight fullerenes

Tight fullerene is one without railroads, i.e., pairs of
”parallel” zigzags.

Clearly, any z-knotted fullerene (unique zigzag) is tight.

F140(I) is tight with z = 2815 (15 simple zigzags).
Conjecture: any tight fullerene has ≤ 15 zigzags.

Conjecture: all tight fullerenes with simple zigzags are 9
known ones (holds for all Fn with n ≤ 200).
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Tight Fn with only simple zigzags

n group z-vector orbit lengths int. vector

20 Ih 106 6 25

28 Td 127 3,4 26

48 D3 169 3,3,3 28

60, IPR Ih 1810 10 29

60 D3 1810 1,3,6 29

76 D2d 224, 207 1,2,4,4 4, 29 and 210

88, IPR T 2212 12 211

92 Th 226, 246 6,6 211 and 210, 4

140, IPR I 2815 15 214

Conjecture: this list is complete (checked for n ≤ 200).
It gives 7 Grünbaum arrangements of plane curves.

– p. 50/87



Tight Fn with simple zigzags

20 Ih, 206 28 Td, 127 48 D3, 169

60 D3, 1810 60 Ih, 1810 76 D2d, 224, 207
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Tight Fn with simple zigzags

88 T , 2212 92 Th, 246, 226

140 I, 2815
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IVb. Zigzags and

Lins triality of maps
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Zigzags on2-complexes (surface maps)

Klein map: z = 821 Dyck map: z = 616

A zigzag, being a local notion, is defined on any surface,
even on a non-orientable one.

Zigzags are also called left-right paths (Shank) or
Petri paths, from Petri polygons of polytopes (Coxeter).

A map and its dual have the same zigzag vector z.
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Zigzags of regular maps

A flag-transitive map is called regular.
Zigzags of regular maps are simple
(i.e., not self-intersecting).

map n rot. group z z(GCk,l)/(k2 + kl + l2)

Dod. {53} 20 PSL(2, 5) 106 106 or 610 or 415

Klein∗ {73} 56 PSL(2, 7) 821 821 or 628

Dyck∗ {83} 32 (1) 616 616 or 812

{113} 220 PSL(2, 11) 1066 1066 or 6110 or 1255

(1) is a solvable group of order 96 generated by two
elements R, S subject to R3 = S8 = (RS)2 = (S2R−1)3 = 1.
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Lins trialities

(v, f , z) → notation in [3] notation in [1] notation in [2]
(v, f , z) M Graph-Ecoded Map M
(f, v, z) M∗ dual gem M∗

(z, f , v) phial(M) phial gem s((s(M))∗)

(f, z, v) (phial(M))∗ skew-dual gem s(M∗)

(v, z, f) skew(M) skew gem s(M)

(z, v, f) (skew(M))∗ skew-phial gem (s(M))∗

Jones, Thornton, 1987: those are only “good” dualities.
1. S. Lins, Graph-Encoded Maps, J. Comb. Theory B-32
(1982) 171–181.
2. K. Anderson and D.B. Surowski, Coxeter-Petrie
Complexes of Regular Maps, European J. of Combinatorics
23-8 (2002) 861–880.
3. D. and M.Dutour, Zigzag Structure of Complexes,
SEAMS Math. Bull. 29-2 (2005), 301–320;
papers/math.CO/0405279 of LANL archive.
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Graph-Encoded Maps

Given a set X and fixed-point-free involutions A,B,C on X
with AB = BA and 〈A,B,C〉 transitive on X, the quadruple
(X;A,B,C) defines a GEM (combinatorial map) M with
sets V (M), E(M), F (M), Z(M) of vertices, edges, faces,
zigzags being orbit-sets of (acting on X) group 〈A,C〉,
〈A,B〉, 〈C,B〉, 〈C,AB〉, respectively.

For a map M=(X;A,B,C), [〈A,B,C〉 : 〈CA,CB〉] ≤ 2: M is
orientable if this rank (orienting in monodromy group) is 2.

Operations dual, skew, phial are reflexions.
Usual dual(M) interchanges roles of A and B; so, vertices
and faces leaving edges, zigzags. Petri dual skew(M)
interchanges B and AB; so, faces/zigzags leaving vertices.

The group 〈dual, skew〉 of trialities is ≃ S3 ≃ Sym3.
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Example: Tetrahedron

phial(Tetrahedron) skew(Tetrahedron)

Two Lins maps on projective plane.

The phial(Tetrahedron) is the complex obtained by
taking the octahedron and identifying opposite points.

skew(Cube) and phial(Octahedron) are toric maps.
phial(Cube) and skew(Octahedron) are maps on a
non-oriented surface of genus 4, i.e., with χ = 2.
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Bipartite skeleton case

4

1

6

8 7

5

2

3

3 6

3

8 7

5 6 4

1 2

3 5

4

8 7

6

Two representation of skew(Cube): on Torus and as a Cube
with cyclic orientation of vertices (marked by ) reversed.

For bipartite graph embedded in oriented surface, the skew operation is,
in fact, reversing orientation of one of the part of the bipartition.
Nedela: skew(M) of orientable M is orien. iff M is bipartite.
Kwak and Kwon: the number of distinct regular embeddings
M of Kn,n with skew(M) ≃ M is 1 if n is odd and equal to
2k+min{2,a0−1} if n is even number 2a0pa1

1 · · · pak

k , where
2 < p1 < · · · < pk are primes and a0, a1, . . . , ak are positive.
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Trialities of prisms and antiprisms

Let χ denotes the Euler characteristic.
Conjecture (checked up to n = 100):

skew(Prismm) has χ = gcd(m, 4) − m and is oriented
iff m is even (i.e., Prismm is bipartite);

phial(Prismm) has χ = 2 + gcd(m, 4) − 2m and is
non-oriented.

skew(APrismm) has χ = 1 + gcd(m, 3) − 2m and is
non-oriented;

phial(APrismm) has χ = 3 + gcd(m, 3) − 2m and is
oriented.
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Zigzags ond-dimensional complexes

A (maximal) flag u = (f0, . . . , fd−1) is a sequence of
i-dimensional faces fi with fi ⊂ fi+1.

Given a flag u, there exist an unique flag σi(u), which differs
from u only in position i, i.e., in f ′

i 6= fi, fi−1 ∈ fi, f
′
i ∈ fi+1.

A zigzag z is a circuit of flags (uj)0≤j≤l, such that u0 = u,
uj = σn . . . σ1(uj−1); so, u1 = (f ′

0, . . . , f
′
n−1).

The number of flags is called its length (it is even for odd d).

Zigzags partition the flag-set of the complex.
z-vector is a vector, listing zigzags with their lengths.

A complex is polytopal if it is the face-lattice of a polytope.

Problem: generalize Lins triality of maps on d-complexes.
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Zigzags of regular/semiregular polytopes

d d-polytope z-vector

3 Dodecahedron 106

4 24-cell 1248

4 600-cell 30240

d d-simplex=αd (n + 1)n!/2

d d-cross-polytope=βd (2n)2
n−2(n−1)!

4 octicosahedric 4-polytope 45480

4 snub 24-cell 20144

4 021=Med(α4) 1512

5 121=Half-5-Cube 12240

6 221=Schläfli polytope (in E6) 184320

7 321=Gosset polytope (in E7) 9048384

8 421 (240 roots of E8) 3629030400
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Va. Three classes of

exotic plane graphs
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Self-dual spheric{44}’s

A self-dual spheric {44} (almost {44} on S
2)

is a self-dual polyhedron with 3-, 4-valent vertices
and 3-, 4-gonal faces only.
Clearly, v3 = p3 = 4 (but v3 = p3 = 0 for such torus)

Their medial (convex hull of midpoints of edges) are
4-valent polyhedra with 3-, 4-gonal faces. Clearly, p3 = 4.

Example: k-elongated square pyramid, k ≥ 1. The
medial of square pyramid (k = 1) is square antiprism.

Problem: Characterize self-dual spheric {44}’s or, at
least, their symmetries, growth as vn, parametrization.

The gyrobifastigum (one of 92 regular-faced polyhedra)
also has p=(p3, p4)=v=(v3, v4)=(4, 4) but it is not self-dual.
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Spheric{36}’s

A spheric {36} (almost {36} on S
2) is a 6-valent plane

graph with 2-, 3-gonal faces only. So, p2=6, v=2 + p3

2 .

Such sphere exists for any v ≥ 2 vertices, starting with
Bundle6 (2 vertices connected by 6 edges).

Central circuit in an Eulerian (i.e., even-valent) plane
graph is a circuit going only straight ahead.

Example: by consequtive, t − 1 times, inscribing of
Bundle4 into Bundle6, comes 2t-vertex spheric {36} with
CC-vector (2t, (2t)2), if t is odd, and (2t, 4t), otherwise.

4, D2d, (22, 8) 4, D2, (12) 8, D6h, (43, 62)
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Three series of spheric{36}’s

Sti: (3t + i− 1)-vertex spheric {36} with CC=(3t, (2t + i− 1)3),
if t + i ≡ 2(mod 3), and CC=(3t, 3(2t + i − 1)), otherwise.

Incomplete cap A cap B
i = 1, 2, 3 if caps AA, AB, BB; first 2 members of 3 series:

3, D3h, S11 4, Td, S12 5, D3h, S13

6, D3d, S21 7, C3ν, S22 8, D3d, S23
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Problems for spheric{36}’s

Estimate, as vn, the number of v-vertex spheric {36}’s
and list their possible symmetries.

Find all of them without self-intersecting central circuits.

Is the number of c. circuits of length ≥ 4 bounded?

Extend, if possible, Goldberg-Coxeter construction for
those 6-valent spheres.
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Small t-knots

(Projection of) t-knot is a finite plane 2t-valent graph (no
loops but 2-gons permitted) having unique central circuit.

So, 1-knot is a knot; smallest 1-knot is trefoil 31.
Smallest t-knot if t > 1, is t-figure-of-eight: 41 if t = 1, and if
t > 1, it comes from (t− 1)-figure by adding 4-ring of 2-gons.

Problem: tabulate small t-knots for any t.
So, program enumerating 2t-valent plane graphs is needed.

V.I. Arnold, Topology of Plane Curves, Wave Fronts,
Legendrian Knots, Sturm Theory and Flattenings of
Projective Curves, Int. Math. Union Bulletin, 39, 1995.
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Vb. Ambiguous

polycycle boundaries

M.Deza, M.Dutour and M.Shtogrin,
Filling of a given boundary by p-gons and related problems,
Proc. of "Information Transfer and Combinatorics"
(Bielefeld, 2004), ed. by R.Ahlswede et al., 2005.
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Polycycles

A (p, 3)-polycycle is a plane 2-connected finite graph with:

all interior faces are (combinatorial) p-gons,

all interior vertices are of degree 3,

all boundary vertices are of degree 2 or 3.

In more general (p, q)-polycycle, interior vertices have
degree q and boundary ones are of degree 2, . . . , q.
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Boundary sequence of(p, 3)-polycycle

The boundary sequence is the sequence of degrees
(2 or 3) of the vertices of the boundary.

Associated sequence is
3323223233232223

The boundary sequence is defined only up to action
of Dn, i.e., the dihedral group of order 2n generated
by cyclic shift and reflexion.

The invariant given by the boundary sequence is the
smallest (by the lexicographic order) representative of
the all possible boundary sequences.
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The filling problem

Does there exist (p, 3)-polycycles with given boundary
sequence?

If yes, is this (p, 3)-polycycle unique?

The cases p = 3 or 4 are trivial.
All (3, 3)-polycycles: Tetrahedron = α3, α3 − e, α3 − v.
All (4, 3)-polycycles: Cube = γ3, γ3 − e, γ3 − v
and serie P2 × Pn, n ≥ 2.

Let p = 5; consider, for example, the sequence 2323232323
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The filling problem

Does there exist (p, 3)-polycycles with given boundary
sequence?

If yes, is this (p, 3)-polycycle unique?

The cases p = 3 or 4 are trivial.
All (3, 3)-polycycles: Tetrahedron = α3, α3 − e, α3 − v.
All (4, 3)-polycycles: Cube = γ3, γ3 − e, γ3 − v
and serie P2 × Pn, n ≥ 2.

Let p = 5; consider, for example, the sequence 2323232323
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What boundary says about its filling(s?)

The boundary of a (p, 3)-polycycle defines it if p = 3, 4.

A (6, 3)-polycyle is of lattice type if its skeleton is a
partial subgraph of the skeleton of the partition {63}
of the plane into hexagons. Such (6, 3)-polycycles
are uniquely defined by their boundary sequence.

From Euler formula, the boundary sequence of any
(p, 3)-polycycle, defines its number fp of p-gons:

If p 6= 6, then fp = v2−v3+5
p−6 and vint = 2(v2−p)−(p−4)v3

p−6 .
If p = 6, then f6 is also defined uniquely and v2 = 6 + v3.
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2 equi-boundary (5, 3)-polycycles

Boundary sequence: 12, 26 vertices of degree 2, 3, resp.
Symmetry groups: of boundary: C2v, of polycycles: C2.

Fillings: 20 pentagons, 12 interior vertices.
It is unique ambiguous boundary with f5 ≤ 20 = 4 × 5.
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2 equi-boundary (6, 3)-polycycles

Boundary sequence: 40, 34 vertices of degree 2, 3, resp.
Symmetry groups: of boundary: C2v, of polycycles: C2.

Fillings: 24 hexagons, 12 interior vertices.
It is unique ambiguous boundary with f6 ≤ 24 = 4 × 6.
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Ambiguous boundary for any p ≥ 6

Boundary sequence is:
b = u2p−1u3p−6u2p−1u3p−6,
where u = (23p−4)p−12.
6p−2 vertices of degree 3

and 4p2−18p+4 of degree 2.

Symmetry groups are:
of boundary: C2v,
of polycycles: C2.

D., Shtogrin and Dutour, 2005: it has two different (but
isomorphic as maps) (p, 3)-fillings (fp = 4p, vint = 2p).
Conjecture: any (p, 3)-polycycle with ≤ 4p p-gons is uniquely
defined by its boundary. It holds for p = 6 (Guo, Hansen and
Zheng, 2002) and p = 5 (D. and Shtogrin, 2006).
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Many equi-boundary (p, 3)-fillings

8 (6, 3)-fillings come by two fillings of those 3 components;
same aggregating gives arbitrarly large number for p ≥ 6.
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More ambiguity

Boundaries, admitting two non-isomorphic (p, 3)-fillings,
can be obtained by adding 1 p-gon to general example.

There exist boundary admitting exactly N (p, 3)-fillings
for any given number N .
Example: boundary 2235n+12235n+32235n+12235n+3 has
exactly n + 1 (5, 3)-fillings (f5 = 20n + 6, vint = 20n + 2).

Ambiguous boundaries exist for (p, q)-polycycles, i.e.,
with max. degree q and exactly q for int. vertices.

Does Ramsey’s type results hold for large fp or vint?
For example, is any (p, q)-polycycle is a partial subgraph
of a (p, q)-filling with the boundary having given "degree
of ambiguity"?
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Equi-boundary (3, 5)-fillings

Two non-isomorphic (3, 5)-fillings of the same boundary
(34345)252(34345)252 (by 34 triangles and 30 int. vertices).
Their symmetry is C2, as of the boundary. This boundary

might be minimal for the number f3 of triangles and/or vint.
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VI. Extreme

physical distances

Chapter 27 of E.Deza and M.Deza,
Dictionary of Distances, Elsevier, 2006.
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The range of physical distances

The distances having physical meaning range from

1.616 × 10−35 m (Planck length lP =
√

~G
c3 ) to

7.4 × 1026 m (Hubble distance DH , the estimated size
of observable Universe) ≈ 46 × 1060 Planck lengths.
So,

√
lP DH is about 0.1 mm, size of a bacterium.

Quantum Theory, Relativity Theory and Newton laws
describe physical systems within 10−15 − 1025 m.

10−15 =1 fermi: strong force, proton/neutron radius.

Gigantic accelerators can register particles 10−19 m.
10−18 =1 attometer: weak force range, quark/electron.

Below: 17 Dark Magnitudes of unknown. Why this gap,
102-1019 GeV in energy terms, is hierarchy problem.
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Lower limit

10−34 m: length of a putative string in M-theory (that all
forces and elementary particles come by their vibration).

Space is smooth till ∼ 10−14, roughness starts at ∼ 10−32.
At ∼ lP ≈ 1.6 × 10−35: quantum foam: violent warping and
turbulence of spacetime; it is not described by cartesian
coordinates, position measurements fail to commute.
The dominant structures: multiply-connected wormholes
and bubbles popping into existence and back out of it.

Uncertainity principle with x, px being position, momentum
along x-axis: △x△(px) ≥ ~ = 1.054 × 10−27 erg-sec.

Quantum Mechanics, General Relativity and all Theories of
Everything (unify gravity, electroweak and strong nuclear
forces) indicate the existence of minimal length, where the
very notion of ”distance” looses operational meaning.
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Gravitation on extreme distances

The gravitation is untested for extreme distances.

Newton law was tested till 56 microns (5.6 × 10−5 m);
so, no extra dimension of ≥ 44 microns. It will be tested
further at LHC (Large Hadron Collider, CERN, 2007).
LHC and ILC (late 2010s) will measure the number, size
and shape of TeV-scale (∼ 10−18 m) extra dimensions.

The existence of 2 extra dimensions of > 8 microns
(or 4 of > 10−12) will be tested via proportionality of the
gravitational attraction in n-dimensional space to d1−n.

So, if Universe have (compactified "large")
4-th dimension, LHC will detect inverse proportionality
to the cube of small inter-particle distance.

General Relativity, more accurate than Newton law,
is untested on galactic and cosmological scales.
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Upper limit

1024 m = 1 yottameter = 104.7 MLY = 32.4 megaparsec:
largest metric length unit.
200 MLY: width of the Great Wall and Lyman alpha blobs,
largest observed superstructures in the Universe.

2.36 × 1024 m= 250 MLY: distance to the Great Attractor,
a gravitational anomaly where our galaxy is going.

9.46 × 1024 m=1 hubble =1 light-Gyr: largest distance unit.
Redshift z ≥ 1 (≥ 8 light-Gyr): cosmological distances.
z = 6.43 =12080 MLY: distance to farthest known quasar.
z ≈ 6.5: the Wall of Invisibility for visible light.
z ≈ 20 ≈ BB+400 MY: first stars formation (end of Dark Age)

1.3 × 1026 m = 13.7 light-Gyr = 4.22 gigaparsec (z ≈ 1089):
Hubble radius (the cosmic light horizon, age of Universe),
cosmic background radiation journey since the Big Bang.

– p. 84/87



The Cosmic Web

On typical scale about 10-100 Mpc, the structure of
Universe is foamlike: near empty voids separated by
sheetlike walls (filaments of galaxies), denser edges
and esp. dense nodes (clusters of galaxies).

Origin: gravitational growth of tiny initial density/velocity
deviations. COBE/WMAP telescopes observed < a
factor 10−5 disturbances in 379.000 years old Universe.

Voids are expanding (from their centers - minima of
Gaussian density fluctuation field). They becoming
more round and of about same size 30-50 Mpc. They
merge or destroyed by larger collapsing overdensity.

In a void, mean inter-galactic distance increase. Galaxy
reach a wall, move on it to an edge, then into node.

Voronoi tiling is asymptotic ultime matter distribution?
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Upper limit

7.4 × 1026 m: the present (comoving: (1 + z)d) distance
to the edge of the observable Universe;
the size of observable Universe is larger than Hubble
radius, since Universe is expanding.

This number being of the order of the gravitational
radius for observable Universe mass (≈ 1060 kg), some
physicists see Univers as a huge rotating black hole.

If (the topology of) Universe is non-simply connected,
then it is compact (finite in extent) and estimated
maximum length scale is only 5 - 15% of Hubble radius.

On the other hand, the hypothesis of parallel universes
estimates that one can find another identical copy of our
Universe within the distance 1010118

m.
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Time limits

In terms of time, Planck time tP =
√

~G
c5 ≈ 5.39 × 10−44 s

is the smallest observable unit of time and the time
before which science cannot describe the Universe.

The present time from the Big Bang is about 13.7 billion
years ≈ 4 × 1017 s.

The Universe (in the current Heat Death scenario)
achieves beyond 101000 years an extremely low-energy
state. So, quantum events became major macroscopic
phenomena and space-time loose usual meaning again
(as below the Planck time).
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