Elementary

polycycles

Michel Deza

Mathieu Dutour Sikiric

ENS, Paris, and JAIST, Ishikawa

Rudjer Boskovic Institute, Zagreb

and Mikhail Shtogrin

Steklov Institute, Moscow

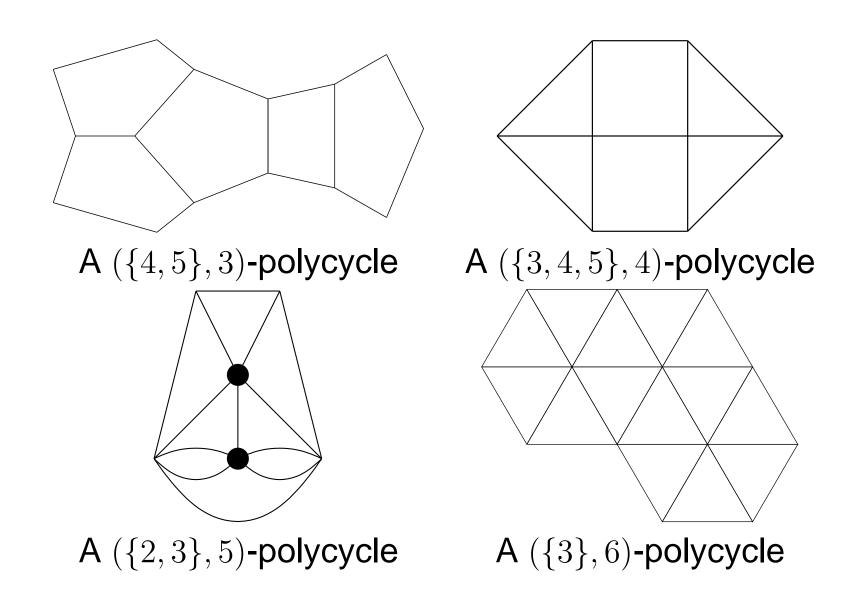
I. (R,q)-polycycles

Definition

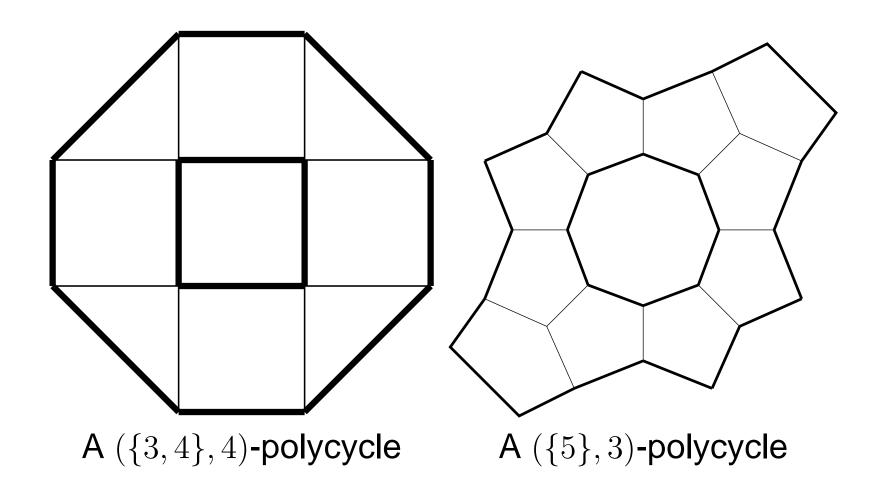
Given $q \in \mathbb{N}$ and $R \subset \mathbb{N}$, a (R, q)-polycycle is a non-empty 2-connected plane, locally finite graph G with faces partitionned in two sets F_1 and F_2 (F_1 is non-empty), so that:

- all elements of F_1 (called proper faces) are combinatorial *i*-gons with $i \in R$;
- all elements of F₂ (called holes) are pair-wisely disjoint,
 i.e. have no common vertices;
- all vertices have degree within $\{2, \ldots, q\}$ and all interior vertices are q-valent.

Examples with one hole



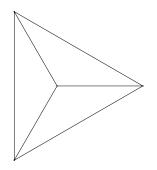
Examples with two holes or more



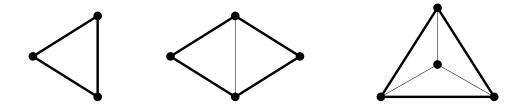
$(\{3\},3)$ -polycycles

Any $(\{3\},3)\text{-polycycle}$ is one of the following

Tetrahedron (with no hole):

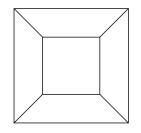


J following polycycles (with one hole):

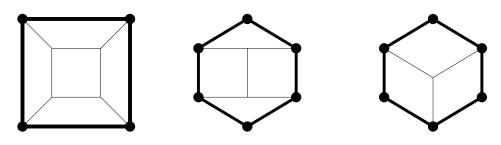


$(\{4\}, 3)$ -polycycles

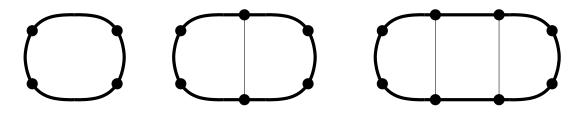
Any ({4}, 3)-polycycle is one of the followingCube (with no hole):



J following polycycles (with one hole)

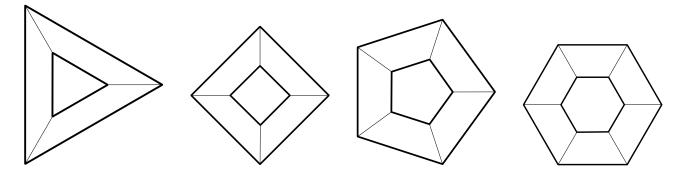


Following infinite family (with one hole):



$(\{4\},3)$ -polycycles

• The infinite family $Prism_n$ (with two holes)



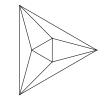
• Following two infinite $(\{4\}, 3)$ -polycycles:

singly infinite polycycle

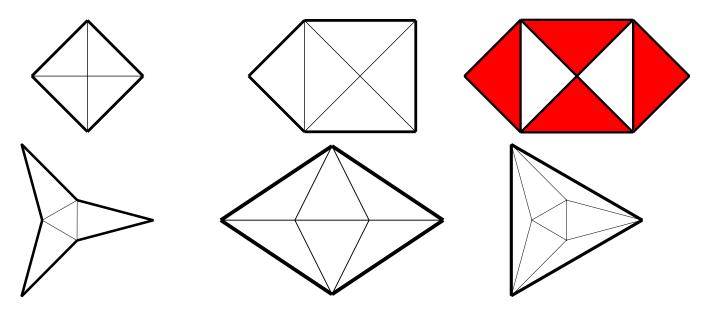
doubly infinite polycycle

 $({3}, 4)$ -polycycles

Octahedron (with no hole):



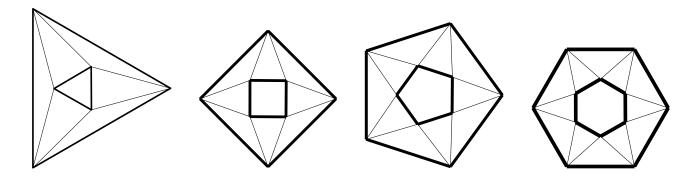
Following polycycles (with one hole)



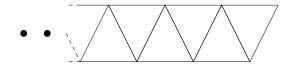
$(\{3\}, 4)$ -polycycles

Following infinite family (with one hole):

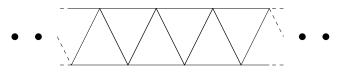
• The infinite family $APrism_n$ (with two holes)



• Following two infinite $(\{3\}, 4)$ -polycycles:



singly infinite polycycle



doubly infinite polycycle

Curvature conditions

- A (R,q)-polycycle is called elliptic, parabolic or hyperbolic if $\frac{1}{q} + \frac{1}{max_{i \in R}i} - \frac{1}{2}$ is positive, zero or negative, respectively.
- Elliptic cases:
 - q = 3 and R with $\max_{i \in R} i \le 5$
 - q = 4 and R with $\max_{i \in R} i \leq 3$
 - q = 5 and R with $\max_{i \in R} i \leq 3$
- Parabolic cases:
 - q = 3 and R with $\max_{i \in R} i = 6$
 - q = 4 and R with $\max_{i \in R} i = 4$
 - q = 6 and R with $\max_{i \in R} i = 6$
- All other cases are hyperbolic.

Limit case $F_2 = \emptyset$, $R = \{r\}$

• Elliptic $(\{r\}, q)$ -polycycles: 5 Platonic solids

Cube

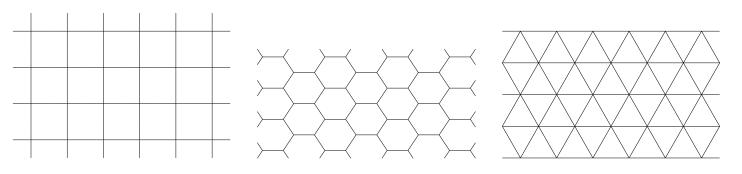
Tetrahedron

Octahedron

cosahedron

Dodecahedron

Parabolic $(\{r\}, q)$ -polycycles: 3 regular plane tilings



• Hyperbolic $(\{r\}, q)$ -polycycles: infinity

Generalization and (r, q)-polycycles

- A generalization of (R, q)-polycycle is (R, Q)-polycycles: the valency of interior vertices belong to a set Q. All the theory extends to this case.
- A (r, q)-polycycle is a ({r}, q)-polycycle with only one hole (the exterior one). Their theory has additional features:
 - There exist a canonical model of them in the form of (r^q) regular partition.
 - For any (r, q)-polycycle P, simple connectedness of P ensures the existence of a canonical map from P to (r^q).

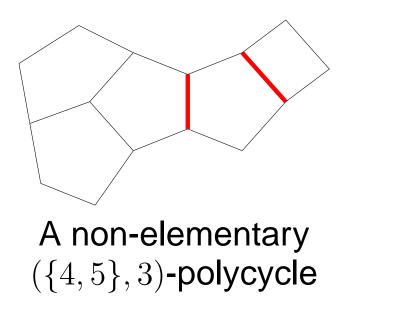
Main examples of (r, q)-polycycles

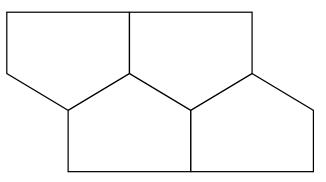
	Elliptic	Parabolic	Hyperbolic
(r,q)	(3,3), (3,4), (4,3)	(4,4)	all
	(5,3), (3,5)	(3,6),(6,3)	others
Exp.	$\alpha_3, \beta_3, \gamma_3, Do, Ico$	$(4^4), (6^3), (3^6)$	(r^q)
reg.part	of sphere S^2	of Euclidean	of hyperbolic
		plane \mathbb{R}^2	plane \mathbb{H}^2
domino diamond hexagon			

Polyominoes: Conway, Penrose, Colomb (games, tilers of \mathbb{R}^2 , etc.), enumeration (in Physics, Statistical Mechanics). Polyhexes: application in Organic Chemistry. I. Decomposition
 into elementary
 polycycles

Elementary polycycles

- A bridge of a (R, q)-polycycle is an edge, which is not on a boundary and goes from a hole to a hole (possibly, the same).
- An elementary (R, q)-polycycle is one without bridges.
- Examples:

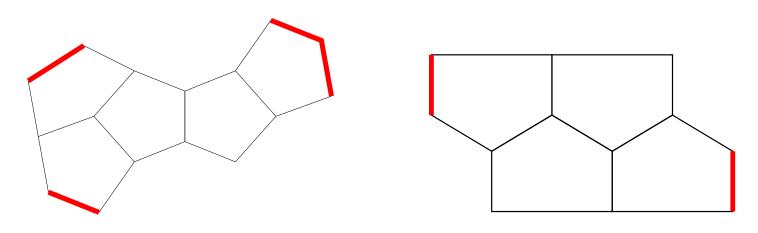




An elementary $({5}, 3)$ -polycycle

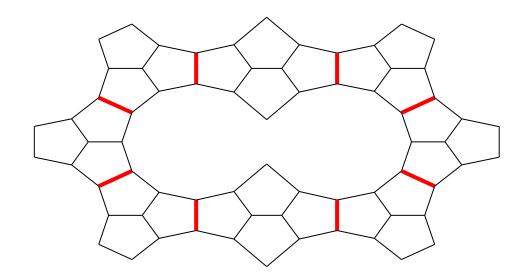
Open edges

- An open edge of an (R, q)-polycycle is an edge on a boundary such that each of its end-vertices have degree less than q.
- Examples



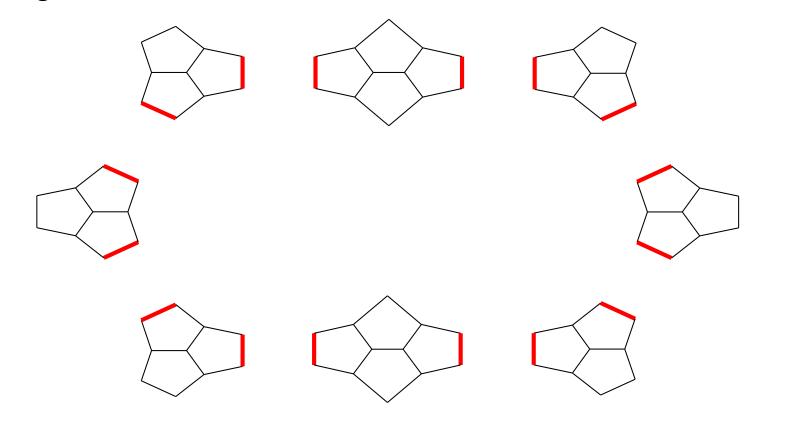
Decomposition theorem

- Theorem: Any (R, q)-polycycle is uniquely decomposed into elementary (R, q)-polycycles along its bridges.
- In other words, any (R, q)-polycycle is obtained by gluing some elementary (R, q)-polycycles along open edges.



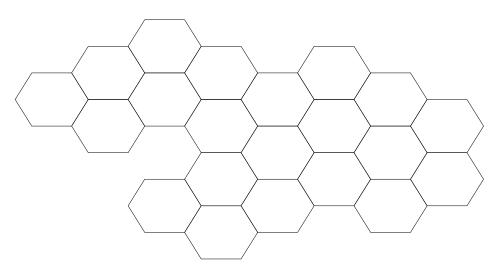
Decomposition theorem

- Theorem: Any (R,q)-polycycle is uniquely decomposed into elementary (R,q)-polycycles along its bridges.
- In other words, any (R, q)-polycycle is obtained by gluing some elementary (R, q)-polycycles along open edges.



Summary

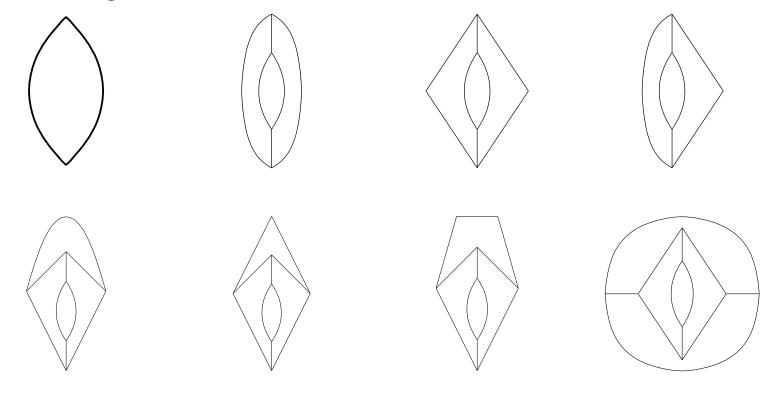
- Elementary (R,q)-polycycles provide a decomposition of (R,q)-polycycles.
- In order for this to be useful, we have to classify the elementary (R,q)-polycycles.
- For non-elliptic cases, there is no hope of classification (there is a continuum of elementary ones):



III. Classification of elementary $(\{2,3,4,5\},3)$ -polycycles

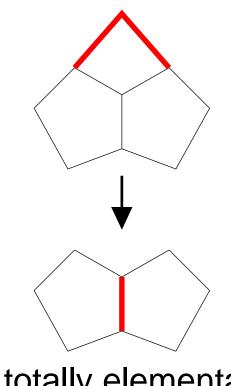
With at least one 2-gon

All elementary $(\{2, 3, 4, 5\}, 3)$ -polycycles, containing a 2-gon, are those eight ones:



Totally elementary polycycle

- Call an elementary (R, 3)-polycycle totally elementary if, after removing any face adjacent to a hole, one obtains a non-elementary (R, 3)-polycycle.
- Examples:



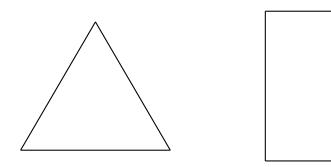
A totally elementary polycycle

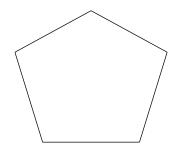
A non-totally elementary polycycle

Classification of totally elementary

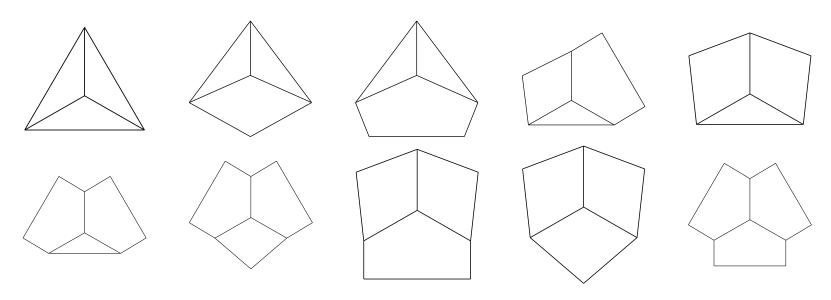
Any totally elementary $(\{3, 4, 5\}, 3)$ -polycycle is one of:

• three isolated *i*-gons, $i \in \{3, 4, 5\}$:



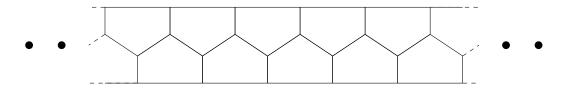


● all ten triples of *i*-gons, $i \in \{3, 4, 5\}$:

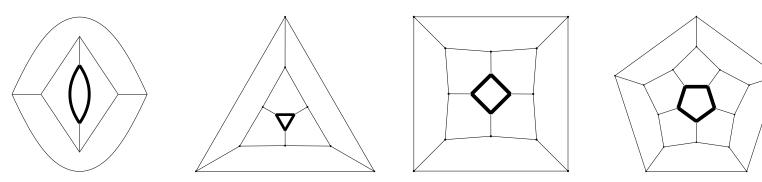


Classification of totally elementary

• the following doubly infinite $(\{5\}, 3)$ -polycycle, denoted by $Barrel_{\infty}$:

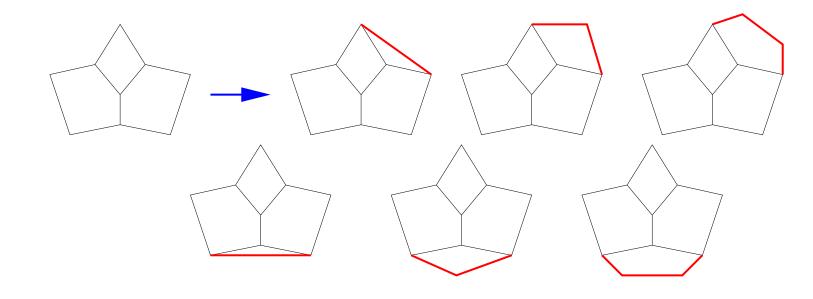


• the infinite series of $Barrel_m$, $m \ge 2$:



Classification methodology

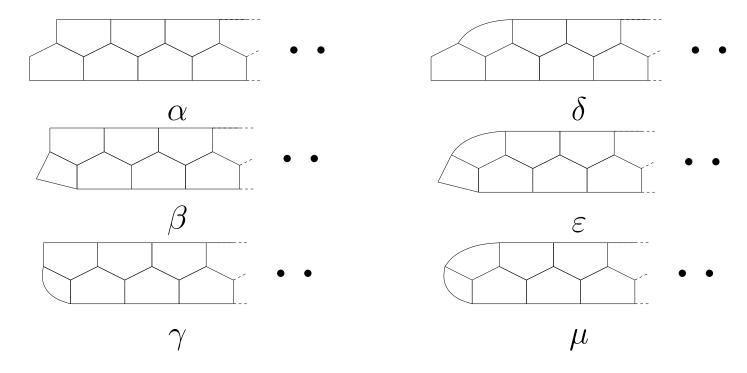
- If an elementary polycycle is not totally elementary, then it is obtained from another elementary one with one face less.
- So, from the list of elementary $(\{3,4,5\},3)$ -polycycles with n faces, one gets the list of elementary $(\{3,4,5\},3)$ -polycycles with n+1 faces.



Full classification

Any elementary $(\{2, 3, 4, 5\}, 3)$ -polycycle is one of:

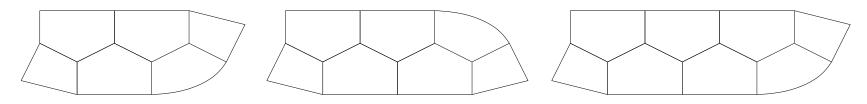
- eight such polycycles containing 2-gons
- totally elementary polycycles
- 204 sporadic polycycles with 4 to 11 proper faces
- six $(\{3,4,5\},3)$ -polycycles, infinite in one direction:



Full classification

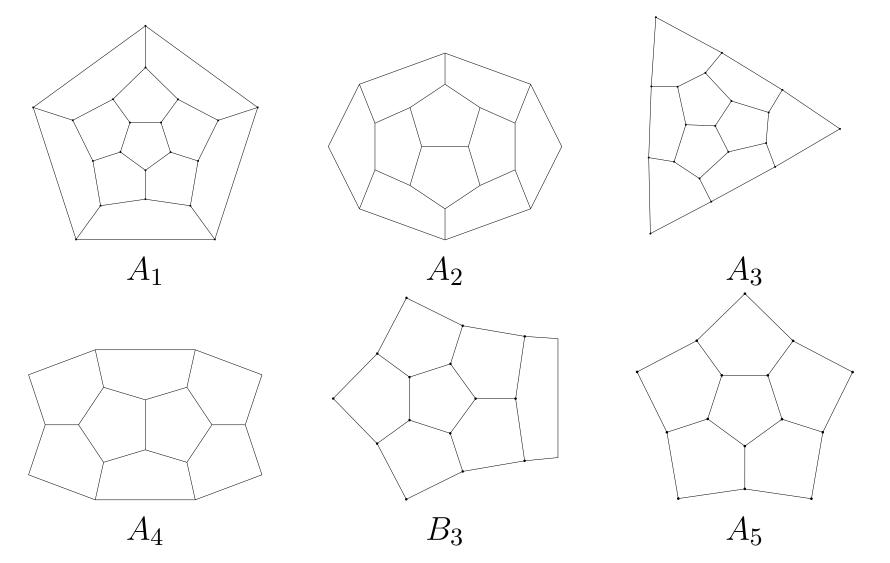
■ $21 = \binom{6+1}{2}$ infinite series obtained by taking two endings of the above infinite polycycles and concatenating them.

See below three examples in the infinite series $\beta \epsilon$

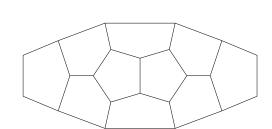


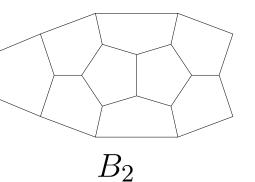
Subcase of $(\{5\}, 3)$ -polycycles

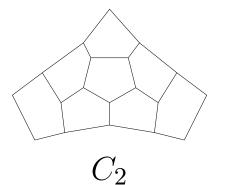
Sporadic elementary $({5}, 3)$ -polycycles:



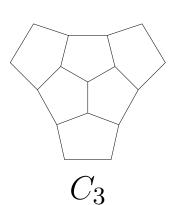
Subcase of $(\{5\}, 3)$ -polycycles

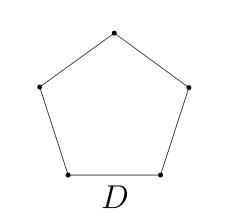






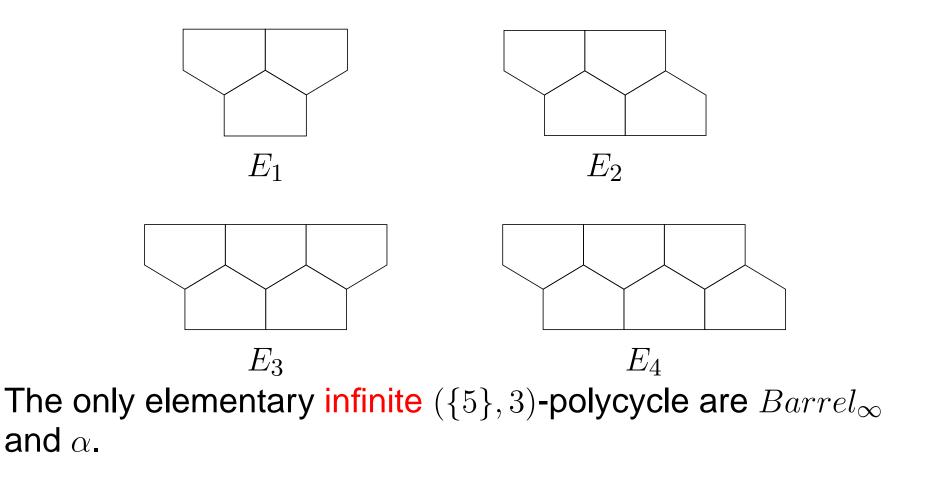
 C_1





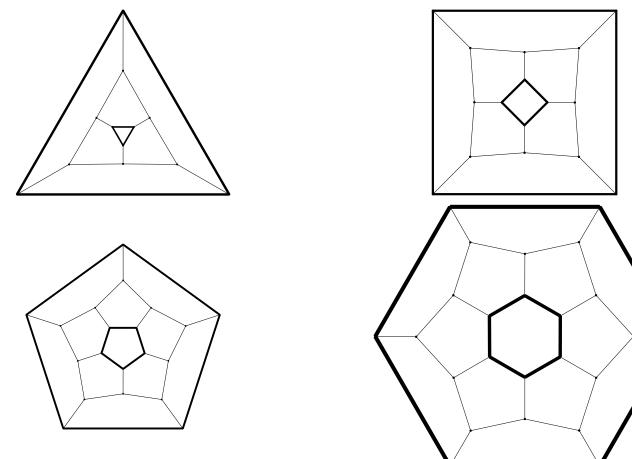
Subcase of $(\{5\}, 3)$ -polycycles

The infinite series of elementary ($\{5\}, 3$)-polycycles $\alpha \alpha$:



Subcase of $(\{5\}, 3)$ -polycycles

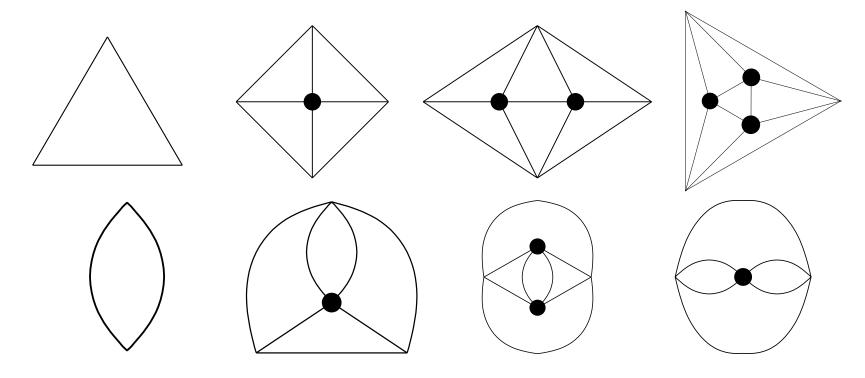
The infinite series of elementary $(\{5\}, 3)$ -polycycles $Barrel_q$, $q \ge 3$:



IV. Classification of elementary ({2,3},4)-polycycles

The classification

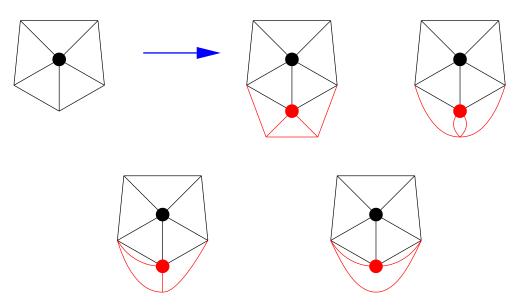
Any elementary $(\{2,3\},4)$ -polycycle is one of the following eight:



V. Classification of elementary ({2,3},5)-polycycles

The technique

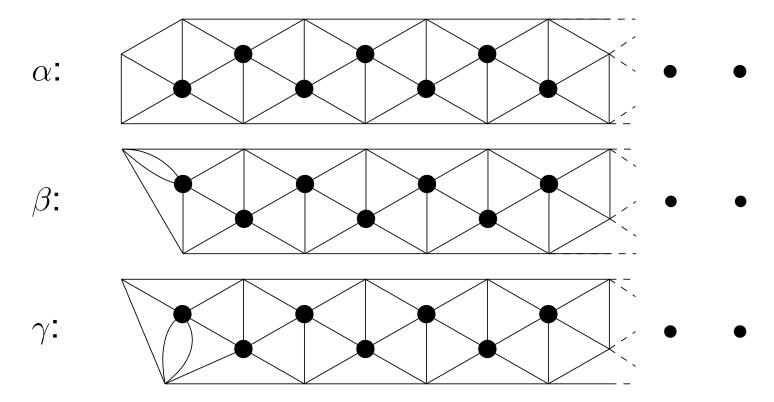
- Take an elementary ({2,3},5)-polycycle. If v is a vertex on the boundary, then we can consider all possible ways to make this vertex an interior vertex in an elementary ({2,3},5)-polycycle.
- From the list of elementary $(\{2,3\},5)$ -polycycles with n interior vertices, one can obtain the list of elementary $(\{2,3\},5)$ -polycycles with n+1 interior vertices.



The classification

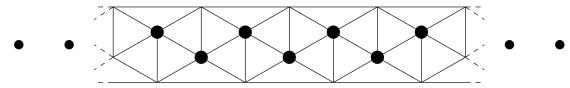
Any elementary $(\{2,3\},5)$ -polycycle is one of:

- 57 sporadic $(\{2,3\},5)$ -polycycles.
- three following infinite $(\{2,3\},5)$ -polycycles:

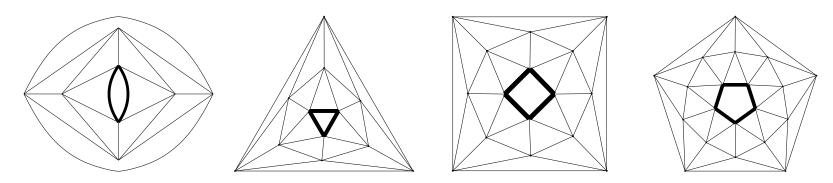


The classification

• the following 5-valent doubly infinite $(\{2,3\},5)$ -polycycle, called snub ∞ -antiprism:



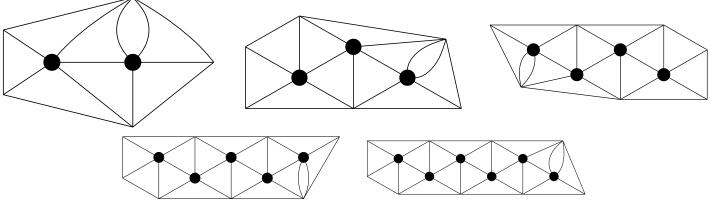
• the infinite series of snub *m*-antiprisms, $m \ge 2$ (two *m*-gonal holes):



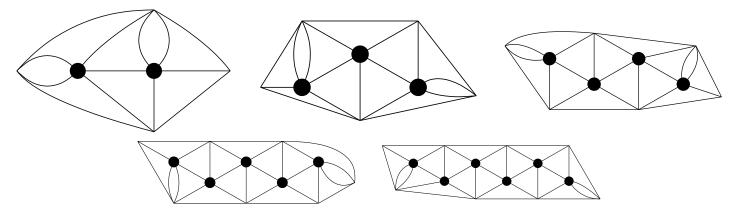
six infinite series of $(\{2,3\},5)$ -polycycles with one hole (they are obtained by concatenating endings α , β , γ)

The classification

Infinite series $\alpha\gamma$ of elementary ({2,3},5)-polycycles:

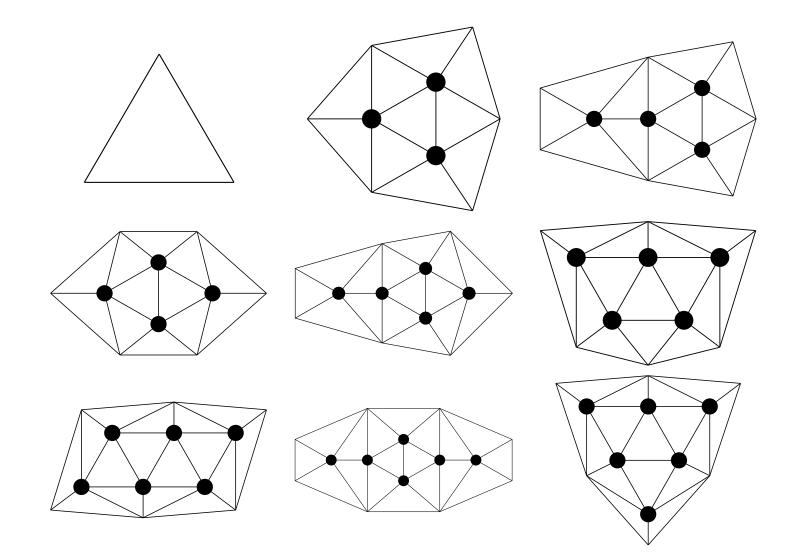


Infinite series $\beta\gamma$ of elementary ({2,3},5)-polycycles:

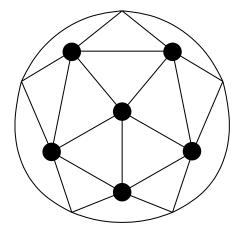


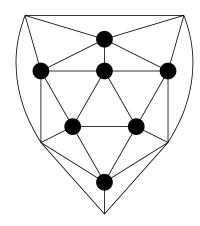
Subcase of $(\{3\}, 5)$ -polycycles

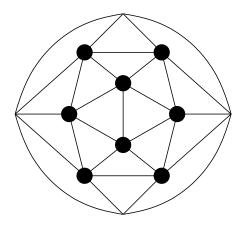
• Sporadic elementary $(\{3\}, 5)$ -polycycles:

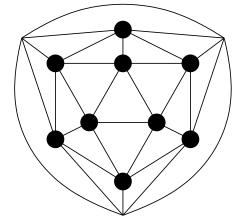


Subcase of $(\{3\}, 5)$ -polycycles



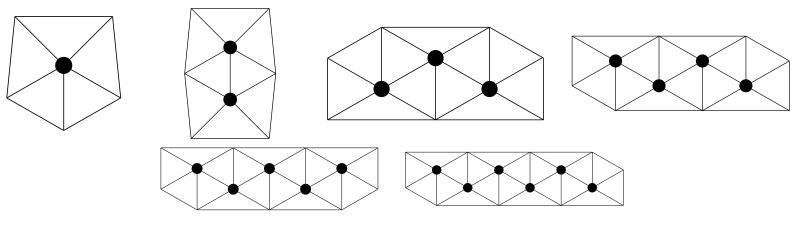






Subcase of $(\{3\}, 5)$ -polycycles

• The infinite series of elementary $(\{3\}, 5)$ -polycycles $\alpha \alpha$:



- The only elementary infinite $(\{3\}, 5)$ -polycycles are α and snub ∞ -antiprism.
- The infinite series of elementary $(\{3\}, 5)$ -polycycles snub *m*-antiprisms, $m \ge 2$:

VI. Application to extremal polycycles

Definition

- Given a finite (r,q)-polycycle P, denote by
 - $n_{int}(P)$ the number of interior vertices
 - and $f_1(P)$ the number of faces in F_1 .
- Fix *x* ∈ ℕ. An (*r*, *q*)-polycycle with $f_1(P) = x$ is called extremal if it has maximal $n_{int}(P)$ among all (*r*, *q*)-polycycles with $f_1(P) = x$.
- Problem: to find $N_{r,q}(x)$, the maximal number of vertices.
- Fact: For fixed $r, q, f_1(P) = x$ extremal polycycle has also maximal $n_{int}(P)$, $e_{int}(P)$ (interior faces) and minimal n, l, $Perim = n_{ext}$
- For (r,q)=(3,3), (4,3), (3,4), the question is trivial.
 8 authors, 1997: found N_{5,3}(x) for x < 12 (unique, partial subgraph of Dodecahedron).

Use of elementary polycycles

If a (r,q)-polycycle P is decomposed into elementary (r,q)-polycycles (EP_i)_{i∈I} appearing x_i times, then one has:

$$\begin{cases} n_{int}(P) = \sum_{i \in I} x_i n_{int}(EP_i) \\ f_1(P) = \sum_{i \in I} x_i f_1(EP_i) \end{cases}$$

If one solves the Linear Programming problem

maximize
$$\sum_{i \in I} x_i n_{int}(EP_i)$$

with $x = \sum_{i \in I} x_i f_1(EP_i)$
and $x_i \in \mathbb{N}$

and if $(x_i)_{i \in I}$ realizing the maximum can be realized as (r,q)-polycycle, then $N_{r,q}(x)$ can be found.

Small extremal (5, 3)-polycycles

x	$N_{5,3}(x)$	extremal	components
1	0		D
2	0		D, D
3	1		E_1
4	2		E_2
5	3		E_3

Small extremal (5, 3)-polycycles

x	$N_{5,3}(x)$	extremal	components
6	5		A_5
7	6		B_3
8	8		A_4
9	10		A_3
10	12		A_2

Small extremal (5, 3)-polycycles

x	$N_{5,3}(x)$	extremal	components
11	15		A_1
12	10		E_{1}, B_{2}
			D, C_1, D
			C_1, D, D
			E_{10}

Extremal (5, 3)-polycycles

• Theorem: For any $x \ge 12$, one has

$$N_{5,3}(x) = \begin{cases} x & if \quad x \equiv 0, 8, 9 \pmod{10}, \\ x - 1 & if \quad x \equiv 6, 7 \pmod{10}, \\ x - 2 & if \quad x \equiv 1, 2, 3, 4, 5 \pmod{10}. \end{cases}$$

Extremal polycycle realizing the extremum:

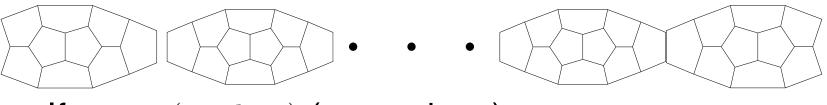
• If $x \equiv 0 \pmod{10}$ (unique):

• If $x \equiv 9 \pmod{10}$ (unique):

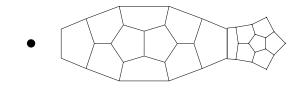
Extremal (5, 3)-polycycles

Extremal polycycle realizing the extremum:

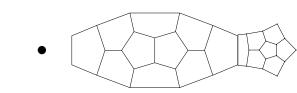
• If $x \equiv 8 \pmod{10}$ (unique):



• If $x \equiv 7 \pmod{10}$ (non-unique):



• If $x \equiv 6 \pmod{10}$ (non-unique):



• Otherwise (non-unique): E_n

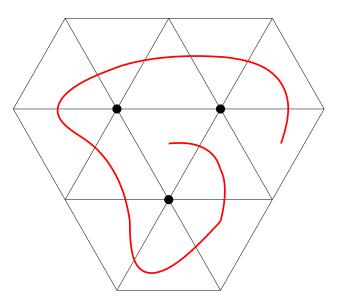
Extremal (3, 5)-polycycles

Theorem

- $N_{3,5}(x) = \lfloor \frac{x}{3} \rfloor + 1$ for $x \equiv 14, 16, 17 \pmod{18}$,
- ▶ $N_{3,5}(x) = \lfloor \frac{x}{3} \rfloor 1$ for $x \equiv 3, 4, 6, 7, 9, 11 \pmod{18}$, and
- $N_{3,5}(x) = \lfloor \frac{x}{3} \rfloor$, otherwise,
- but with 5 exceptions: above value plus 1 for x = 11, 15, 17 and $N_{3,5}(x) = x 10$ for $16 \le x \le 19$.

Non-elliptic case

For parabolic (r, q)-polycycles (i.e. (r, q)=(4, 4), (6, 3) or (3, 6)) the method of elementary polycycles fails (since there is no classification) but "extremal animals" of Harary-Harborth 1976 (proper ones, growing as a spiral) are extremal:

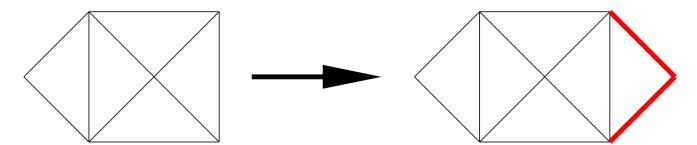


Hyperbolic cases are very difficult.

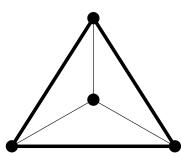
VII. Application to non-extendible polycycles

Definition

• A (r,q)-polycycle is called non-extendible if it is no proper subgraph of another (r,q)-polycycle. Examples:



Extendible (3, 4)-polycycle

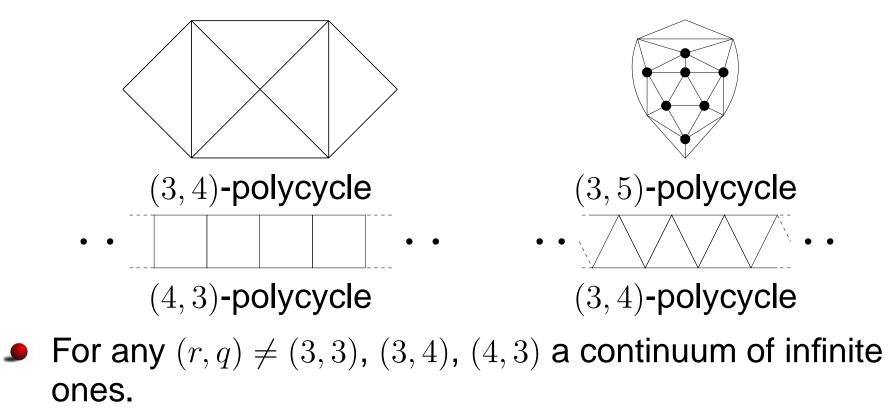


Non-extendible (3,3)-polycycle

Classification

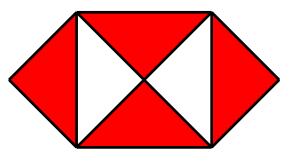
Theorem: All non-extendible (r, q)-polycycles are:

- Regular partitions (r^q)
- Four following examples:

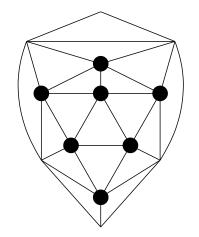


All finite non-extendible polycycles

So, the number of finite non-extendible (r, q)-polycycles is 7: five Platonic polyhedra and vertex-splits of two of them:



vertex-split Octahedron: from 1983, logo of HSBC, Hongkong and Shanghai Banking Corporation Ltd

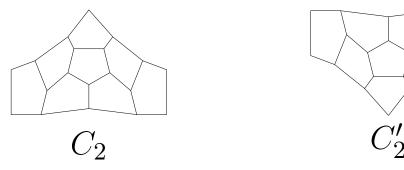


vertex-split Icosahedron: also looks OK

Above *Hexagon* was developed from bank's 19th century house flag: white rectangle divided diagonally to produce a red hourglass shape. This flag was derived from Scottish flag: *saltire* or *crux decussata* (heraldic symbol in the form of diagonal cross; Saint Andrew was crucified upon). 13th-century tradition states that the cross was X-shaped at -p.416

Infinite non-extendible polycycles

Take the two elementary (5,3)-polycycles and



form infinite word $\ldots u_{-1}u_0u_1\ldots$ with u_i being C_2 or C'_2 . This gives a continuum of non-extendible (5,3)-polycycles.

- Similarly, one has a continuum of (3,5)-polycycles.
- For non-elliptic (r,q), one takes the infinite tiling (r^q) , removes an infinity of *r*-gonal faces sharing no edges and takes the universal cover of this (r,q)-polycycle.

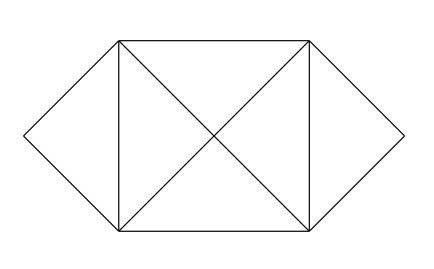
Finite non-extendible polycycles

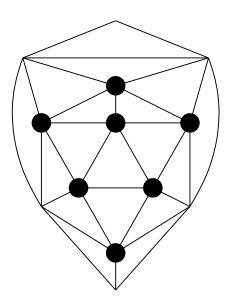
- Main lemma: all finite non-extendible (r,q)-polycycles are elliptic, i.e. $\frac{1}{q} + \frac{1}{r} > \frac{1}{2}$
- So, we can use decomposition of non-extendible (r, q)-polycycles into elementary (r, q)-polycycles and the classification of them.
- Given an (r,q)-polycycle P, the graph of its elementary components is denoted by el(P); its vertices are its elementary (r,q)-polycycles with two elementary (r,q)-polycycles adjacent if they share an edge:

$$- E_1 - E_2$$

Finite non-extendible polycycles

- A finite $(\{r\}, q)$ -polycycle P is a non-extendible (r, q)-polycycle if and only if el(P) is a tree.
- Every tree is either an isolated vertex, or contains at least one vertex of degree 1.
- One checks on this vertex that there is only two possibilities:





VIII. 2-embeddable (r, q)-polycycles

2-embedding

• The Hamming distance on $\{0,1\}^n$ is defined by

$$d(x, y) = \#\{1 \le i \le n \mid x_i \ne y_i\}$$

- Given a connected graph G, denote by d_G the shortest path distance between vertices of G
- A graph G is said to be 2-embeddable if, for some n, there exists a mapping

$$\psi: V(G) \longrightarrow \{0,1\}^S$$
$$v \longmapsto \psi(v)$$

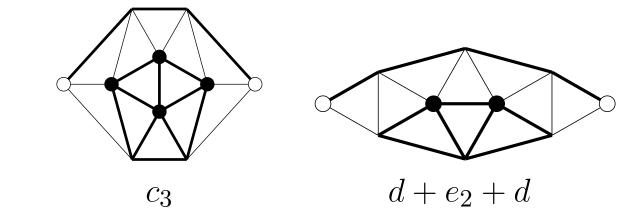
such that, for all vertices v, v' of G, one has $d(\psi(v), \psi(v')) = 2d_G(v, v')$

Alternating zones

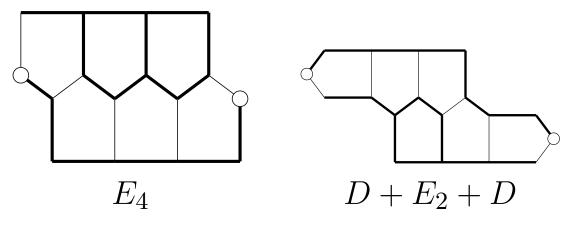
- In a plane graph G, an alternating zone, is a sequence of edges e_i such that e_i and e_{i+1} belong to a same face F_i and it holds:
 - If $|F_i|$ is even, e_i and e_{i+1} in opposition
 - If $|F_i|$ is odd, e_i and e_{i+1} are opposed. There are two possible choices for e_{i+1} given e_i and they are required to alternate.
- A subgraph H of G is called convex if, for any two vertices v, v' of H, all shortest paths between v and v' are included in H.
- If Z is a not self-intersecting alternating zone, then G Z consists of two graphs G_i . If both G_i are convex, then we say that Z defines convex cut.

Examples

Two (3,5)-polycycles with an non-convex alternating zone:



Two (5,3)-polycycles with an alternating zone, which is not convex:

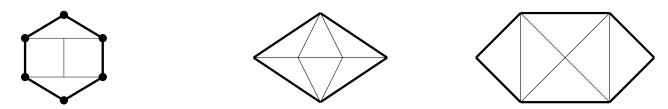


Embedding of (r, q)-graph

- If the alternating zones of a plane graph G define convex cuts, then G is 2-embeddable.
- Above condition is not necessary.
- A (r, q)-graph is a plane graph such that all interior faces have at least r edges and all interior vertices have degree at least q.
- Chepoi et al.: (4, 4)-, (3, 6)- and (6, 3)-graphs are 2-embeddable.
- So, all parabolic and hyperbolic (r, q)-polycycle are 2-embeddable.

Elliptic 2-embeddable (r, q)-polycycles

• For elliptic $(r,q) \neq (5,3), (3,5)$ (i.e., (3,3), (3,4), (4,3)), only three polycycles are non-embeddable:



- A (3,5)-polycycle different from Icosahedron $\{3,5\}$ and $\{3,5\} v$, is 2-embeddable if and only if it does not contain, as an induced subgraph, any of (3,5)-polycycles c_3 and $d + e_2 + d$.
- A (5,3)-polycycle different from Dodecahedron $\{5,3\}$ is 2-embeddable if and only if it does not contain, as an induced subgraph, any of (5,3)-polycycles E_4 and $D + E_2 + D$.

IX. Application to

face-regular spheres

Euler formula

- Take a 3-valent plane map and denote by p_k the number of faces having k edges.
- Then one has the equality

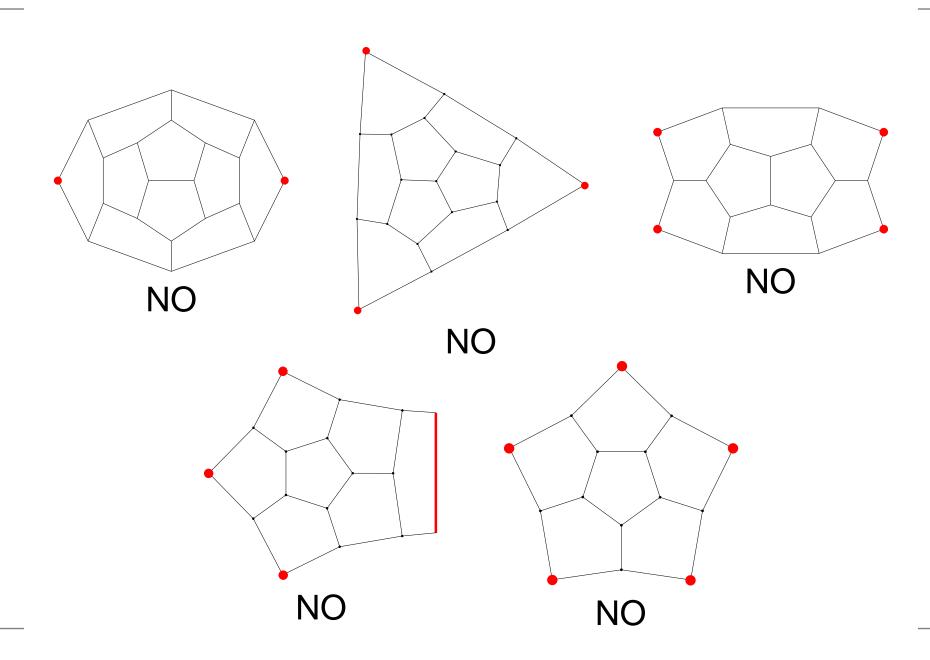
$$12 = \sum_{k=3}^{\infty} (6-k)p_k$$

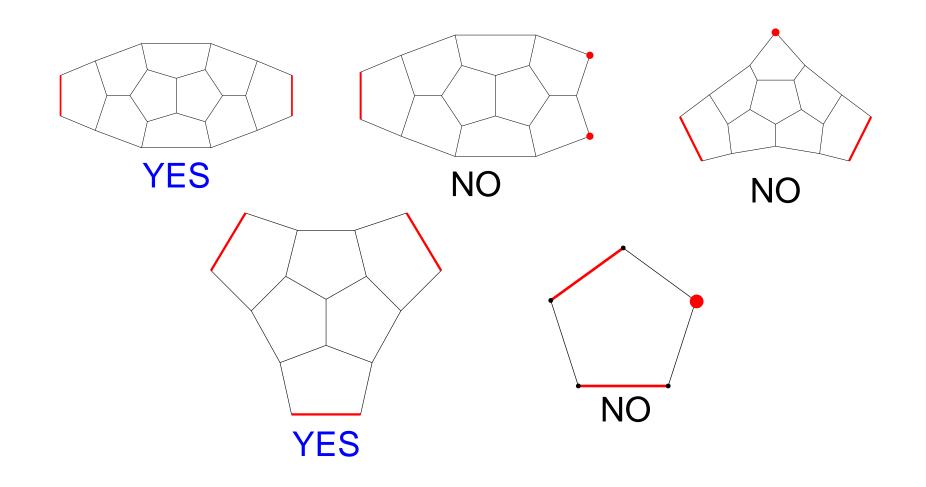
- So, every 3-valent plane map has at least one face of size less than 6.
- So, 3-valent plane graphs with faces of gonality at most 5
 - have at most 12 faces,
 - have at most 20 vertices.

Face-regular maps

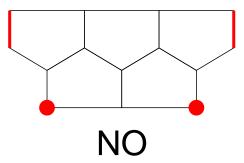
- A (p,q)-sphere is a 3-valent plane graphs, whose faces are p- or q-gonal.
- **•** Take G a (p,q)-sphere. Then:
 - G is called pR_i if every p-gonal face is adjacent to exactly i p-gonal faces.
 - G is called qR_j if every q-gonal face is adjacent to exactly j q-gonal faces.
- The subject of enumerating them is very large. We intend to show non-trivial results obtained by using decomposition into elementary polycycles.

- The set of 5-gonal faces of (5, q)-sphere qR_0 is decomposed into elementary $(\{5\}, 3)$ -polycycles.
- Let us see in the classification the elementary polycycles that could be ok
 - They should be finite (this eliminate $Barrel_{\infty}$ and α)
 - They should have some vertices of degree 2 (this eliminates Dodecahedron and Barrel_k)
 - It should be possible to fill open edges so as to have no pending vertices of degree 2.

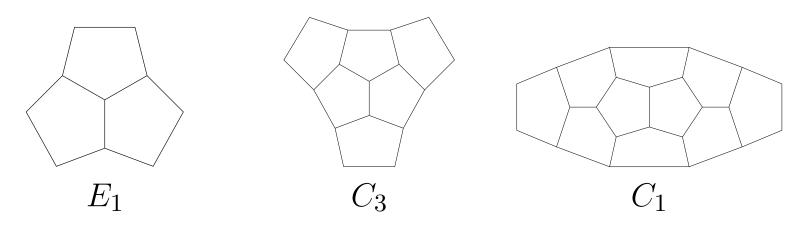




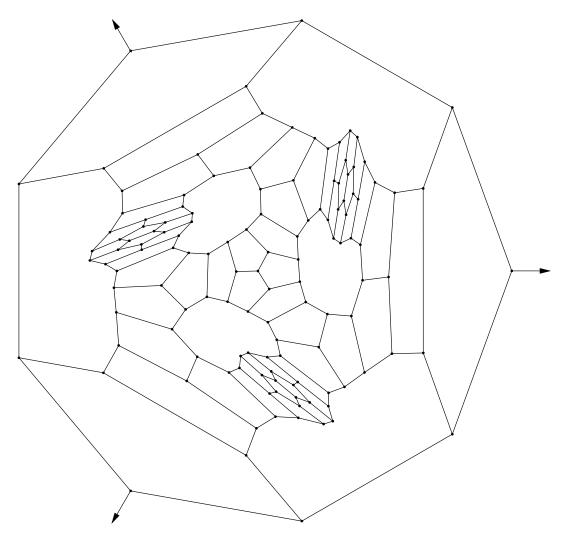
The infinite series of elementary ($\{5\}, 3$)-polycycles $\alpha \alpha$:



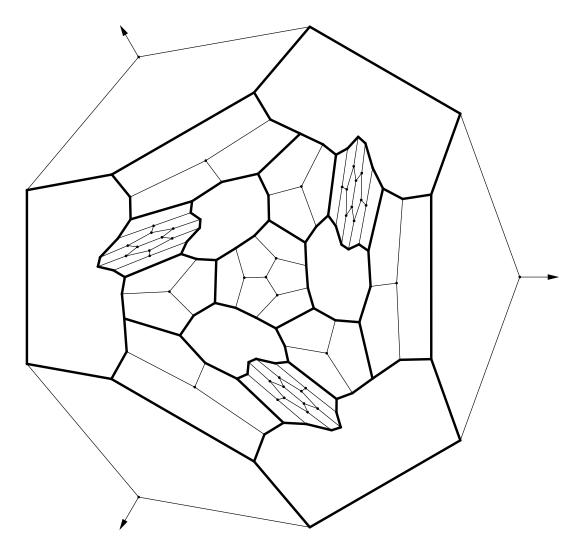
The set of 5-gonal faces of (5, q)-sphere qR₀ is decomposed into the following elementary ({5},3)-polycycles:



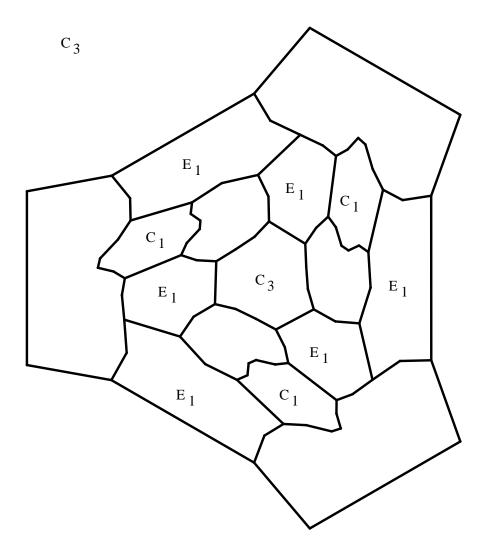
- The major skeleton Maj(G) of a (5, q)-sphere qR₀ is a 3-valent map, whose vertex-set consists of polycycles E₁ and C₃.
- It consists of el(G) with the vertices C_1 (of degree 2) being removed.



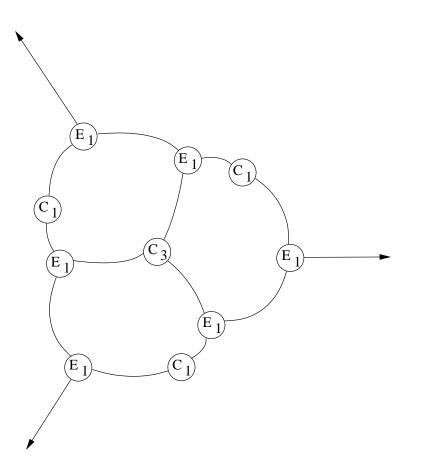
A (5, 14)-sphere $14R_0$



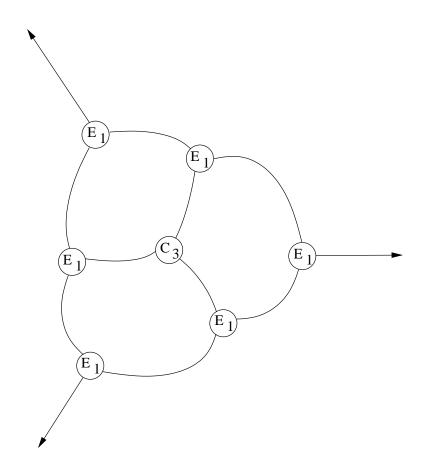
The decomposition into elementary polycycles.



Their names in the classification of $(\{5\}, 3)$ -polycycles.



The graph el(G)



Maj(G): eliminate C_1 , so as to get a 3-valent map

Results

For a (5, q)-sphere qR_0 , the gonality of faces of the 3-valent map Maj(G) is at most $\lfloor \frac{q}{2} \rfloor$.

- Proof: Take a q-gonal face F. Denote by x_{E_1} , x_{C_3} and x_{C_1} the number of $(\{5\}, 3)$ -polycycles E_1 , C_3 and C_1 incident to F.
- Counting edges, one gets:

$$q = 2x_{E_1} + 3x_{C_3} + 5x_{C_3}$$

which implies $q \ge 2(x_{E_1} + x_{C_3})$.

Sut $x_{E_1} + x_{C_3}$ is the gonality of the face corresponding to F in Maj(G).

Results

For q < 12, we have a finite number of (5, q)-spheres qR_0 .

- **Proof**: Take such a plane graph G.
- The associated map Maj(G) is 3-valent with faces of gonality at most 5.
- So, the number of $(\{5\}, 3)$ -polycycles E_1 and C_3 is at most 20.
- The number of polycycles C_1 is bounded as well.
- This implies that the number of vertices of G is bounded and so, we have a finite number of spheres.