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l. (R, q)-polycycles



Definition
fGiven g€ Nand R C N, a (Rz, q)-polycycle is a non-empty

2-connected plane, locally finite graph G with faces
partitionned in two sets F; and F; (F} is non-empty), so that:

=

# all elements of £} (called proper faces) are
combinatorial i-gons with i € R;

# all elements of 5 (called holes) are pair-wisely disjoint,
l.e. have no common vertices;

# all vertices have degree within {2, ..., ¢} and all interior
vertices are ¢-valent.

—p. 3t



Examples with one hole

)

A ({4,5}, 3)-polycycle A ({3,4,5},4)-polycycle

A ({2,3},5)-polycycle A ({3}, 6)-polycycle
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Examples with two holes or more

- .

A ({3,4},4)-polycycle A ({5}, 3)-polycycle



({3}, 3)-polycycles
-

Any ({3}, 3)-polycycle is one of the following
# Tetrahedron (with no hole):

# 3 following polycycles (with one hole):
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({4}, 3)-polycycles

fAny ({4}, 3)-polycycle is one of the following T
#® Cube (with no hole):

o 3 following polycycles (with one hole)

ORe

# Following infinite family (with one hole):
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({4}, 3)-polycycles

f #® The infinite family Prism,, (with two holes) T

B> >0 @

# Following two infinite ({4}, 3) polycycles

singly infinite polycycle doubly infinite polycycle



({3}, 4)-polycycles
-

# Octahedron (with no hole):

P>

# Following polycycles (with one hole)
SRR
N




({3}, 4)-polycycles

f # Following infinite family (with one hole): T

IVAVAVAVAVAN

# The Infinite family APrism,, (with two holes)

@

o Followmg two infinite ({3},4) polycycles

L singly infinite polycycle doubly infinite polycycle J
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Curvature conditions

- .

® A (R, q)-polycycle is called elliptic, parabolic or
hyperbolic if  + —-— — 5 is positive, zero or negative,
respectively.

# Elliptic cases:
s g=3and R with max;cpi <5
s g=4and R with max;cpi <3
s ¢g=5and Rwith max;cpi <3

#® Parabolic cases:
s ¢ =3and R with max;cri =06
s ¢ =4 and Rwith max;cpi =4
s g=06and R with max;cri =06

L’ All other cases are hyperbolic. J
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Limit case Fb = (), R = {r}

f.’ Elliptic ({r}, q)-polycycles: 5 Platonic solids T
Tetra- Cube Octa- lcosa- Dodeca-
hedron hedron hedron hedron

o Parabolic ({r}, q)-polycycles: 3 regular plane tilings

S:85tet

~» Hyperbolic ({r}, q)-polycycles: infinity .




Generalization and(r, g)-polycycles

- .

# A generalization of (R, q)-polycycle is (R, Q)-polycycles:
the valency of interior vertices belong to a set (). All the
theory extends to this case.

® A (r,q)-polycycle is a ({r}, q)-polycycle with only one
hole (the exterior one). Their theory has additional
features:

» There exist a canonical model of them in the form of
(r?) regular partition.
s For any (r, q)-polycycle P, simple connectedness of

P ensures the existence of a canonical map from P
to (r9).

o -
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Main examples of(r, ¢)-polycycles

-

=

Elliptic Parabolic Hyperbolic
(r,q) (3,3),(3,4), (4,3) (4,4) all
(5,3), (3,5) (3,6), (6,3) others
Exp. | a3, 33, 73, Do, Ico | (4),(6°), (3%) (r9)
reg.part of sphere S? of Euclidean | of hyperbolic
plane R? plane H?

Polyhexes: application in Organic Chemistry.

o

domino

<l> diamond

Polyominoes: Conway, Penrose, Colomb (games, tilers of
R?, etc.), enumeration (in Physics, Statistical Mechanics).

-
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Il. Decomposition
INnto elementary

polycycles



Elementary polycycles
- o

# A bridge of a (R, q)-polycycle is an edge, which is not

on a boundary and goes from a hole to a hole (possibly,
the same).

# An elementary (R, q)-polycycle is one without bridges.
# Examples:

A non-elementary An elementary
({4,5},3)-polycycle ({5}, 3)-polycycle

o -
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Open edges
B o

# An open edge of an (R, g)-polycycle is an edge on a
boundary such that each of its end-vertices have

degree less than g.
#® Examples




Decomposition theorem

- .

#® Theorem: Any (R, q)-polycycle is uniquely decomposed
Into elementary (R, q)-polycycles along its bridges.

# [n other words, any (R, q)-polycycle is obtained by

gluing some elementary (R, q)-polycycles along open
edges.



Decomposition theorem

- .

#® Theorem: Any (R, q)-polycycle is uniquely decomposed
Into elementary (R, q)-polycycles along its bridges.

# [n other words, any (R, q)-polycycle is obtained by
gluing some elementary (R, q)-polycycles along open

T
3 g
N Se oS e Nos .



Summary

- .

# Elementary (R, q)-polycycles provide a decomposition
of (R, q)-polycycles.

# In order for this to be useful, we have to classify the
elementary (R, q)-polycycles.

# For non-elliptic cases, there is no hope of classification
(there is a continuum of elementary ones):
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l1l. Classification
of elementary
(12, 3,4, 5}, 3)-polycycles



With at least one2-gon

-

All elementary ({2, 3,4, 5}, 3)-polycycles, containing a 2-gon,

are those eight ones:

=

0
v 0



Totally elementary polycycle

~» Callan elementary (R, 3)-polycycle totally elementary if,
after removing any face adjacent to a hole, one obtains
a non-elementary (R, 3)-polycycle.

# Examples:

SoJppsa
o Yy

A totally elementary A non-totally elementary
L polycycle polycycle J
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Classification of totally elementary

fAny totally elementary ({3, 4,5}, 3)-polycycle is one of: T
# three isolated i-gons, i € {3,4,5}:

/\

# all ten triples of i-gons, i € {3,4,5}:

565
O

O
D &
&




Classification of totally elementary

- .

# the following doubly infinite ({5}, 3)-polycycle, denoted
by Barrels:

#® the infinite series of Barrel,,, m > 2:

D A\ =]




Classification methodology

f.’ If an elementary polycycle is not totally elementary, T
then it is obtained from another elementary one with

one face less.

# 5o, from the list of elementary ({3,4,5}, 3)-polycycles
with n faces, one gets the list of elementary
({3,4,5}, 3)-polycycles with n + 1 faces.

07~ 0 7
GG
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Full classification

fAny elementary ({2, 3,4, 5}, 3)-polycycle is one of: T
# eight such polycycles containing 2-gons
o totally elementary polycycles
# 204 sporadic polycycles with 4 to 11 proper faces

® sixX ({3,4,5}, 3)-polycycles, infinite in one direction:

===
M W
W W

o -
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Full classification

» 21 = (°t1) infinite series obtained by taking two endings
of the above infinite polycycles and concatenating them.

See below three examples in the infinite series (e

T D Sy




Subcase of {5}, 3)-polycycles

B

As

&
iy

Sporadlc elementary ({5}, 3)-polycycles:

&
Reas




Subcase of {5}, 3)-polycycles

@@ @




Subcase of {5}, 3)-polycycles
-

The infinite series of elementary ({5}, 3)-polycycles a«:

=

Fr
FEy
The only elementary infinite ({5}, 3)-polycycle are Barrel

and
T -



Subcase of {5}, 3)-polycycles
-

The infinite series of elementary ({5}, 3)-polycycles Barrel,,
q > 3.




V. Classification

of elementary

({2, 3}, 4)-polycycles



The classification

-

Any elementary ({2, 3}, 4)-polycycle is one of the following

eight:

=

/\ <D <P
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V. Classification

of elementary

({2, 3}, 5)-polycycles



The technigque
B | o

o Take an elementary ({2, 3},5)-polycycle. If v is a vertex
on the boundary, then we can consider all possible
ways to make this vertex an interior vertex in an
elementary ({2, 3}, 5)-polycycle.

o From the list of elementary ({2, 3}, 5)-polycycles with n
Interior vertices, one can obtain the list of elementary
({2, 3}, 5)-polycycles with n 4 1 interior vertices.

PTE P
o @ @ -
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The classification

-

Any elementary ({2, 3}, 5)-polycycle is one of:
# 57 sporadic ({2, 3}, 5)-polycycles.
o three following infinite ({2, 3}, 5)-polycycles:




The classification

s the following 5-valent doubly infinite ({2, 3}. 5)-polycycle,

called snub co-antiprism:

7 ~N
e o - e e
7 ~N

# the infinite series of snub m-antiprisms, m > 2 (two

m-gonal holes):

D L\

® six infinite series of ({2,3},5

)-polycycles with one hole

(they are obtained by concatenating endings «, G, v)

o

-
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The classification

-

Infinite series o~ of elementary ({2, 3}, 5)-polycycles:

@@M

TaTer et

Infinite series (5~ of elementary ({2, 3}, 5)-polycycles:

@@%@

=



Subcase of {3}, 5)-polycycles

.p Sporadic elementary ({3}, 5)-polycycles:

B
R
Y

/\
<P
oy




Subcase of {3}, 5)-polycycles




Subcase of {3}, 5)-polycycles
-

The infinite series of elementary ({3}, 5)-polycycles aa:

The only elementary infinite ({3}, 5)-polycycles are «
and snub oc-antiprism.

The infinite series of elementary ({3}, 5)-polycycles
snub m-antiprisms, m > 2:
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VI. Application
to extremal

polycycles



Definition

Given a finite (r, ¢)-polycycle P, denote by -
» nin(P) the number of interior vertices
s and f;(P) the number of faces in F7.

Fix z € N. An (r, q)-polycycle with f,(P) = z is called
extremal If it has maximal n;,,;(P) among all
(r, q)-polycycles with f1(P) = x.

Problem: to find N, ,(z), the maximal number of
vertices.

Fact: For fixed r, ¢, f1(P) = x extremal polycycle has
also maximal n;,:(P), ein:(P) (interior faces) and
minimal n, [, Perim = ngyy

For (r,q)=(3,3), (4,3), (3,4), the question is trivial.
8 authors, 1997: found N5 3(x) for z < 12 (unique, partial
subgraph of Dodecahedron). J
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Use of elementary polycycles

- .

# Ifa (r, q)-polycycle P is decomposed into elementary
(r,q)-polycycles (EP;);c; appearing z; times, then one
has:

Nint(P) = D ;e Tinint(EF;)
fi(P) = D iecrxifi(EER)

# |f one solves the Linear Programming problem
maximize » ._;zinin(EF;)

with « = Zz’é] :UZfl(EPZ)
and z; € N

and if (x;);cr realizing the maximum can be realized as
B (r, ¢)-polycycle, then N,.,(z) can be found. B
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Small extremal (5, 3)-polycycles

f r | Ns3(z) | extremal | components T
oo | o | b
21 0 <I> D, D
3 1 ‘ F

S IR L



-

Small extremal (5, 3)-polycycles

r | Ns3(z) | extremal | components
| s | 5| 4
e | 9| s
8 8 81 Ay
9 10 @ As
10 12 @ Ao

=



-

Small extremal (5, 3)-polycycles

r | Ns3(z) extremal components

11 15 @ A

12 10 818] En, By
faaaaan Y

=



Extremal (5, 3)-polycycles

f #® Theorem: For any x > 12, one has

T if x=0,8,9 (mod 10),
r—1 if x=6,7 (mod 10),
r—2 if v=1,2,3,4,5 (mod 10).

N53(x) =

# Extremal polycycle realizing the extremum:
s If 2 =0 (mod 10) (unique):

K- - - BT

s If 2 =9 (mod 10) (unique):

KD - @@

o

=



Extremal (5, 3)-polycycles

- .

# Extremal polycycle realizing the extremum:
s If z =8 (mod 10) (unique):

KR DRTD: -+ I

s If =7 (mod 10) (non-unique):

KD - - R

s If =06 (mod 10) (non-unique):

RODEGD: - - KO

s Otherwise (non-unigue): £,

o -



Extremal (3, 5)-polycycles
.

heorem

® N3s5(z)=|5] +1forx=14,16,17 (mod 18),

® N3s(v)=[5|—1forx=3,4,6,7,9,11 (mod 18), and
® N3s5(x) = |3], otherwise,

# Dbut with 5 exceptions: above value plus 1 for

r=11,15,17and N35(x) =z — 10 for 16 < z < 19.
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Non-elliptic case

f.’ For parabolic (r, q)-polycycles (i.e. (r,q)=(4,4), (6,3) or T
(3,6)) the method of elementary polycycles fails (since
there Is no classification) but “extremal animals” of
Harary-Harborth 1976 (proper ones, growing as a
spiral) are extremal:

# Hyperbolic cases are very difficult. J

o
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VII. Application
to non-extendible

polycycles



Definition

- .

# A (r,q)-polycycle is called non-extendible if it is no
proper subgraph of another (r, g)-polycycle. Examples:

—

Extendible (3, 4)-polycycle

Non-extendible (3, 3)-polycycle
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Classification

-

Theorem: All non-extendible (r, q)-polycycles are:

%

(3,4)-polycycle (3,5)-polycycle

=

o Regular partitions (r9)
# Four following examples:

\

(4, 3)-polycycle (3,4)-polycycle

# Forany (r,q) # (3,3), (3,4), (4,3) a continuum of infinite

L ones. J
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All finite non-extendible polycycles

fSo, the number of finite non-extendible (r, ¢)-polycycles is 7:T
five Platonic polyhedra and vertex-splits of two of them:

vertex-split Octahedron:
from 1983, logo of HSBC,

Hongkong and Shanghai vertex-split Icosahedron:
Banking Corporation Ltd also looks OK

Above Hexagon was developed from bank’s 19th century
house flag: white rectangle divided diagonally to produce a
red hourglass shape. This flag was derived from Scottish

flag: saltire or crux decussata (heraldic symbol in the form

of diagonal cross; Saint Andrew was crucified upon). J
13th-century tradition states that the cross was X-shaped at _, ...



Infinite non-extendible polycycles

- .

# Take the two elementary (5, 3)-polycycles and

N

Co Cy

form infinite word . . . u_jugu; ... with u; being Cy or CY.
This gives a continuum of non-extendible
(5, 3)-polycycles.

# Similarly, one has a continuum of (3, 5)-polycycles.

# For non-elliptic (r, g), one takes the infinite tiling (r9),
removes an infinity of r-gonal faces sharing no edges
and takes the universal cover of this (r, g)-polycycle.

o -
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Finite non-extendible polycycles

- .

o Main lemma: all finite non-extendible (r, ¢g)-polycycles
. - . 1 1 1
are elliptic, 1.e. ;T F >3
#® S0, we can use decomposition of non-extendible

(r, q)-polycycles into elementary (r, q)-polycycles and
the classification of them.

# Given an (r, q)-polycycle P, the graph of its elementary
components is denoted by c/( P); its vertices are its
elementary (r, ¢)-polycycles with two elementary

(r, q)-polycycles adjacent if they share an edge:

@~@ QJ
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Finite non-extendible polycycles
B o

o A finite ({r}, q)-polycycle P is a non-extendible
(r, q)-polycycle if and only if el(P) Is a tree.

# Every tree is either an isolated vertex, or contains at
least one vertex of degree 1.

# One checks on this vertex that there is only two
possibilities:




VIll. 2-embeddable
(1, q)-polycycles



2-embedding

- .

# The Hamming distance on {0, 1}" is defined by

d(z,y) = #{1 <i<n |z # y}
# Given a connected graph &, denote by d the shortest
path distance between vertices of GG

# A graph G is said to be 2-embeddable If, for some n,
there exists a mapping

Y:V(G) — {0,1}°
v = P(v)
such that, for all vertices v, v’ of GG, one has

d((v), ¥ (v')) = 2dg(v,v')

o
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-

# In aplane graph G, an alternating zone, is a seguence

Alternating zones

=

of edges ¢; such that ¢; and ¢;1 belong to a same face
F; and it holds:

s If |F;| Is even, e; and e;;1 In opposition
s If |F;|Is odd, ¢; and ¢;5; are opposed. There are two

possible choices for ¢; 11 given ¢; and they are
required to alternate.

A subgraph H of GG is called convex if, for any two
vertices v, v’ of H, all shortest paths between v and ¢’
are included in H.

If Z Is a not self-intersecting alternating zone, then
G — Z consists of two graphs G;. If both G; are convex,
then we say that Z defines convex cut. J
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Examples

- .

wo (3,5)-polycycles with an non-convex alternating zone:

® =

d+eo+d
Two (5, 3 polycycles with an alternating zone, which is not

R

D+ E>+ D
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°

Embedding of (r, q)-graph
=

If the alternating zones of a plane graph G define
convex cuts, then G is 2-embeddable.

Above condition is not necessary.

A (r,q)-graph is a plane graph such that all interior
faces have at least » edges and all interior vertices have
degree at least g.

Chepoi et al.: (4,4)-, (3,6)- and (6, 3)-graphs are
2-embeddable.

So, all parabolic and hyperbolic (r, g)-polycycle are
2-embeddable.
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Elliptic 2-embeddable(r, ¢)-polycycles
B o

# For elliptic (r,q) # (5,3),(3,5) (i.e., (3,3),(3,4), (4,3)),
only three polycycles are non-embeddable:

<>

# A (3,5)-polycycle different from Icosahedron {3,5} and
{3,5} — v, is 2-embeddable if and only if it does not
contain, as an induced subgraph, any of
(3,5)-polycycles c3 and d + eo + d.

# A (5,3)-polycycle different from Dodecahedron {5,3} is
2-embeddable if and only if it does not contain, as an
Induced subgraph, any of (5, 3)-polycycles E, and
D+ Ey 4+ D.

o -
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|X. Application
o

face-regular spheres



o

Euler formula

=

Take a 3-valent plane map and denote by p;. the number
of faces having & edges.

Then one has the equality

©.@)

2= 36~ k)

k=3
So, every 3-valent plane map has at least one face of
size less than 6.

So, 3-valent plane graphs with faces of gonality at most
5!

s have at most 12 faces,
o have at most 20 vertices. J
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Face-regular maps

- .

#® A (p,q)-sphere is a 3-valent plane graphs, whose faces
are p- or ¢g-gonal.
o Take G a (p, q)-sphere. Then:

s (G Is called pR; if every p-gonal face is adjacent to
exactly i p-gonal faces.

s G is called ¢Rz; If every ¢g-gonal face is adjacent to
exactly j ¢g-gonal faces.

#® The subject of enumerating them is very large. We
Intend to show non-trivial results obtained by using
decomposition into elementary polycycles.

#® p <5. S0, If one removes all g-gonal faces and all edges
between any two ¢-gonal faces, then the result is a

L ({p}, 3)-polycycle. J
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Polycycles of(5, q)-sphereq R

f # The set of 5-gonal faces of (5, ¢)-sphere ¢Ry IS T
decomposed into elementary ({5}, 3)-polycycles.

# Let us see In the classification the elementary
polycycles that could be ok
s They should be finite (this eliminate Barrel,, and «)

» They should have some vertices of degree 2 (this
eliminates Dodecahedron and Barrel}.)

s It should be possible to fill open edges so as to have
no pending vertices of degree 2.
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Polycycles of(5, q)-sphereq R
- o

&b B> B

NO
NO

NO




Polycycles of(5, ¢)-sphereq R
0

@@ ﬁ%
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Polycycles of(5, q)-sphereq R
-

The infinite series of elementary ({5}, 3)-polycycles a«:

oy Y

YES NO

Iy

NO

-




(5, q)-sphereq R

- .

# The set of 5-gonal faces of (5, q)-sphere qRy IS
decomposed into the following elementary
({5}, 3)-polycycles:

Sogiaesss

#® The major skeleton Ma](G) of a (5 ,q)-sphere qRO IS a
3-valent map, whose vertex-set consists of polycycles
Fq and (5.

# [t consists of el(G) with the vertices C; (of degree 2)

L being removed. J
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(5, q)-sphereq R

A (5,14)-sphere 14 Ry



(5, q)-sphereq R

The decomposition into elementary J
polycycles

o



(5, q)-sphereq R

Their names In the classification of
({5}, 3)-polycycles. J



(5, q)-sphereq R

The graph el(G)



(5, q)-sphereq R

Maj(G): eliminate C1, so as to get a 3-valent
L map J



Results

- .

For a (5, q)-sphere ¢Ry, the gonality of faces of the 3-valent
map Maj(G) is at most |1 .

# Proof: Take a ¢-gonal face F. Denote by zp,, z¢, and
rc, the number of ({5}, 3)-polycycles E;, C3 and C
Incident to F.

# Counting edges, one gets:
q = 2«TE1 -+ 3:1303 + 5$C3

which implies ¢ > 2(xg, + z¢,).

® Butzp, + zo, IS the gonality of the face corresponding
to Fin Maj(G).

o -
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Results

. .

#® Proof: Take such a plane graph G.

# The associated map Maj(G) Is 3-valent with faces of
gonality at most 5.

# So, the number of ({5}, 3)-polycycles £, and Cs Is at
most 20.

#® The number of polycycles (' is bounded as well.

# This implies that the number of vertices of G is bounded
and so, we have a finite number of spheres.

or g < 12, we have a finite number of (5, q)-spheres qRy.

o -
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