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Overview



Definition of a fullerene

A (geometric) fullerene Fn is a simple (i.e., 3-valent) polyhedron
(putative carbon molecule) whose n vertices (carbon atoms)
are arranged in 12 pentagons and (n2 − 10) hexagons.

Fn exist for all even n ≥ 20 except n = 22.

1, 1, 1, 2, 5 . . . , 1812, . . . 214127713, . . . isomers Fn, for n =
20, 24, 26, 28, 30 . . . , 60, . . . , 200, . . . .

Graphite lattice (63) as F∞: the “largest fullerene”

Thurston,1998, implies: no. of Fn grows as n9.

C20(Ih),C60(Ih),C80(Ih) are only icosahedral (i.e., with highest
symmetry Ih or I ) fullerenes with n ≤ 80 vertices.

preferable (or IP) fullerenes, Cn, satisfy isolated pentagon rule.



I. 8 families of standard

({a, b}, k)-spheres



(R , k)-spheres: curvature κi=1+ i
k −

i
2 of i -gons

Fix R ⊂ N, an (R, k)-sphere is a k-regular, k ≥ 3, map on S2
whose faces are i-gons, i ∈ R. Let m=min and M=maxi∈R i .

Let v , e and f =
∑

i pi be the numbers of vertices, edges and
faces of S , where pi is the number of i-gonal faces. Clearly,
kv=2e=

∑
i ipi and Euler formula v − e + f = 2 become

2=
∑

i piκi , where κi=1+ i
k −

i
2 is the curvature of i-gons.

So, m< 2k
k−2 . For m≥3, it implies 3 ≤ m, k ≤ 5, i.e. 5 Platonic

pairs of parameters (m, k)=(3, 3), (4, 3), (3, 4), (5, 3), (3, 5).

If M< 2k
k−2 (mini∈R κi> 0), then

either 1) k = 3, M ≤ 5, or 2) k ∈ {4, 5}, M ≤ 3.
So, for m ≥ 3, they are only Octahedron, Icosahedron and
11 ({3, 4, 5}, 3)-spheres: 8 dual deltahedra, Cube and its
truncations on 1 or 2 opposite vertices (Dürer octahedron).
In other words: five Platonic and eight ({3, 4, 5}, 3)-spheres.



Standard (R , k)-spheres

An (R, k)-sphere is standard if M= 2k
k−2 , i.e. mini∈R κi=0.

So, (M, k)=(6, 3), (4, 4), (3, 6) (Euclidean parameter pairs).
Exclusion of i-faces with κi<0 simplifies enumeration, while
number pM of flat (κM=0) M-faces not being restricted,
there is an infinity of such (R, k)-spheres.

The number of such v -vertex (R, k)-spheres with |R|=2
increases polynomially with v .
Such spheres admit parametrization and description in terms
of rings of (Gaussian if k=4 and Eisenstein if k=3, 6) integers.
All eight series of such spheres will be considered in detail.

Remaining (R, k)-spheres (with M> 2k
k−2 , i.e. mini∈R κi< 0)

do not admit above, in general. We will consider only simplest
case: ({3, 4}, 5)-spheres. The number of such v -vertex
spheres grows at least exponentially with v .



8 families of standard ({a, b}, k)-spheres

An ({a, b}, k)-sphere is an (R, k)-sphere with R = {a, b},
1 ≤ a < b. It has v= 1

k (apa + bpb) vertices.

Such standard sphere has b = 2k
k−2 ; so, (b, k)=

(6, 3), (4, 4), (3, 6) and Euler formula become
2 = κapa=(1 + a

k −
a
2)pa=(1− a

b )pa.

So, pa = 2b
b−a and all possible (a, pa) are:

(5, 12), (4, 6), (3, 4), (2, 3) for (b, k)=(6, 3);
(3, 8), (2, 4) for (b, k)=(4, 4);
(2, 6), (1, 3) for (b, k)=(3, 6).

Those 8 families can be seen as spheric analogs of the regular
plane partitions {63}, {44}, {36} with pa disclinations
(”defects”) κa added to get the curvature 2 of the sphere.



8 families: existence criterions

Grűnbaum-Motzkin, 1963: criterion for k=3 ≤ a; Grűnbaum, 1967:
for ({3, 4}, 4)-spheres; Grűnbaum-Zaks, 1974: for a = 1, 2.

k (a, b) smallest one it exists if and only if pa v

3 (5, 6) Dodecahedron p6 6= 1 12 20 + 2p6
3 (4, 6) Cube p6 6= 1 6 8 + 2p6
4 (3, 4) Octahedron p4 6= 1 8 6 + p4
6 (2, 3) 6× K2 p3 is even 6 2 + p3

2

3 (3, 6) Tetrahedron p6 is even 4 4 + 2p6
4 (2, 4) 4× K2 p4 is even 4 2 + p4

3 (2, 6) 3× K2 p6=(k2 + kl + l2)− 1 3 2 + 2p6
6 (1, 3) Trifolium p3=2(k2 + kl + l2)− 1 3 1+p3

2

5 (3, 4) Icosahedron p4 6= 1 2p4+20 2p4+12

({3, 6}, 3)- (Grűnbaum-Motzkin, 1963) and ({2, 4}, 4)-spheres
(Deza-Shtogrin, 2003) admit a simple 2-parametric description.



8 families of standard ({a, b}, k)-spheres

Let us denote ({a, b}, k)-sphere with v vertices by {a, b}v .

({5, 6}, 3)- and ({4, 6}, 3)-spheres are (geometric) fullerenes
and boron nitrides. {5, 6}60(Ih): a new carbon allotrope C60.

({a, b}, 4)-spheres are minimal projections of alternating links,
whose components are their central circuits (those going only
ahead) and crossings are the verices.

By smallest member Dodecahedron {5, 6}20, Cube {4, 6}8,
Tetrahedron {3, 6}4, Octahedron {3, 4}6 and 3×K2 {2, 6}2,
4×K2 {2, 4}2, 6×K2 {2, 3}2, Trifolium {1, 3}1, we call eight
families: dodecahedrites, cubites, tetrahedrites, octahedrites
and 3-bundelites, 4-bundelites, 6-bundelites, trifoliumites.

b-icosahedrites (({3, b}, 5)-spheres) are not standard if b≥3,
pb≥0, since p3=pb(3b-10)+20 and κb = 10−3b

10b < 0.



Generation of standard ({a, b}, k)-spheres

({2, 3}, 6)-spheres, except 2× K2 and 2× K3, are the duals of
({3, 4, 5, 6}, 3)-spheres with six new vertices put on edge(s).
Exp: ({5, 6}, 3)-spheres with 5-gons organized in six pairs.

({1, 3}, 6)-spheres, except {1, 3}1 and {1, 3}3, are as above
but with 3 edges changed into 2-gons enclosing one 1-gon.

({2, 6}, 3)-spheres are given by the Goldberg-Coxeter
construction from Bundle3 = 3× K2 {2, 6}2.

({1, 3}, 6)-spheres come by the Goldberg-Coxeter construction
(extended below on 6-regular spheres) from Trifolium {1, 3}1.



III. ({a, b}, k)-spheres
with small pb: listings



({a, b}, k)-spheres with pb ≤ 2< a < b

Remind: (a, k)=(3, 3), (4, 3), (3, 4), (5, 3), (3, 5) if k , a ≥ 3.

The only ({a, b}, k)-spheres with pb ≤ 1 are 5 Platonic (ak):
Tetrahedron, Cube (Prism4), Octahedron (APrism3),
Dodecahedron (snub Prism5), Icosahedron (snub APrism3).

There exists unique trivial 3-connected ({a, b}, k)-sphere with
pb=2 for ({4, b}, 3)-, ({3, b}, 4)-, ({5, b}, 3)-, ({3, b}, 5)-:
Dbh Prismb and Dbd APrismb, snub Prismb, snub APrismb:
two b-gons separated by b-ring of 4-gons, 2b-ring of 3-gons,
two b-rings of 5-gons, two 3b-rings of 3-gons.

Also, for t≥2, 10 non-trivial ({a, at}, k)-spheres with pat=2:
5 ({a, ta}, k)-spheres are (Dth) necklaces of polycycles {ak}-e,
3 are (Dth) necklaces of t v -split {34} and e-split {53}, {35},
({3, 3t}, 5)-spheres Cth, Dt are necklaces of t v -, f -split {35}.



({a, ta}, k)-spheres with pta = 2, k=3, 4, 5; case t=2

D2h: a=3 a=4 a=5 a=5

a=3 D2h a=3 D2h

a=3 D2h a=3 D2h a=3 C2h a=3 D2



Proof method: elementary (a, k)-polycycles

A (a, k)-polycycle is a 2-connected plane graph with faces
partitioned in a-gonal proper faces and holes, exterior face
among them, so that vertex degrees are in {2, . . . , k} and can
be < k only for a vertex lying on the boundary of a hole.

Any (a, k)-polycycle decomposes uniquely along its bridges
(non-boundary going hole-to-hole, possibly, same, edges)
into elementary ones. Cf. integer factorisation into primes.

We listed them for κa=1+ a
k −

a
2≥0. Othervise, continuum.

This ({5, 15}, 3)-sphere with p15=3 is a 3-holes ({5}, 3)-polycycle
It decomposes into five 1-hole elementary ({5}, k)-polycycles.



({a, b}, 3)-spheres with pb = 3

({a, b}, k)-sphere with pb = 3 exists if and only if
b ≡ 2, a, 2a− 2 (mod 2a) and b ≡ 4, 6 (mod 10) if a=5.

Such sphere are unique if b is not ≡ a (mod 2a) and then their
symmetry is D3h, except when (a, k) = (3, 5) when the
symmetry is D3.

There are 7 such spheres with t=bb6c=0 and
3+4+5+17 of them for any t ≥ 1.



IV. 8 standard families:

4 smallest members



First four ({4, 6}, 3)- and ({5, 6}, 3)-spheres

Oh (64) D6h (182) D3h (62; 30) D2d (242)

Ih (106) D6d (12; 60) D3h (123; 42) Td (127)



First four ({2, 6}, 3)- and ({3, 6}, 3)-spheres

Number of ({2, 6}v ’s is nr. of representations v=2(k2 + kl + l2),
0 ≤ l ≤ k (GCk,l({2, 6}2)). It become 2 for v=72=52+15+32.

D3h (6) D3h (63) D3h (122) D3 (42)

Td (43) D2h (82, 42) Td (123) Td (86)



First four ({2, 4}, 4)- and ({3, 4}, 4)-spheres

D4h 221 (22) D4h 421 (42) D2h 2×221 (22, 4) D2d 622 (62)

Oh 632 (43)
Borr. rings D4d 818 (16)

D3h 940 (18)
(Herschel)∗

D2 10256
(6; 14)

Above links/knots are given in Rolfsen, 1976 and 1990 notation.
Herschel graph: the smallest non-Hamiltonian polyhedral graph.



First four ({2, 3}, 6)- and ({1, 3}, 6)-spheres

D6h (23) D3h (3; 6) D2d (22; 8) Td (34)

C3v (3) C3h (3; 6) C3v (62) C3 (21)

Grűnbaum-Zaks, 1974: {1, 3}v exists iff v = k2 + kl + l2 for
integers 0 ≤ l ≤ k . We show that the number of {1, 3}v ’s is the
number of such representations of v , i.e. found GCk,l({1, 3}1).



V. Symmetry groups of

({a, b}, k)-spheres



Finite isometry groups

All finite groups of isometries of 3-space E3 are classified.
In Schoenflies notations, they are:

C1 is the trivial group

Cs is the group generated by a plane reflexion

Ci = {I3,−I3} is the inversion group

Cm is the group generated by a rotation of order m of axis ∆

Cmv (' dihedral group) is the group generated by Cm and m
reflexion containing ∆

Cmh = Cm × Cs is the group generated by Cm and the
symmetry by the plane orthogonal to ∆

S2m is the group of order 2m generated by an antirotation, i.e.
commuting composition of a rotation and a plane symmetry



Finite isometry groups Dm, Dmh, Dmd

Dm (' dihedral group) is the group generated of Cm and m
rotations of order 2 with axis orthogonal to ∆

Dmh is the group generated by Dm and a plane symmetry
orthogonal to ∆

Dmd is the group generated by Dm and m symmetry planes
containing ∆ and which does not contain axis of order 2

D2h D2d



Remaining 7 finite isometry groups

Ih = H3 is the group of isometries of Dodecahedron;
Ih ' Alt5 × C2

I ' Alt5 is the group of rotations of Dodecahedron

Oh = B3 is the group of isometries of Cube

O ' Sym(4) is the group of rotations of Cube

Td = A3 ' Sym(4) is the group of isometries of Tetrahedron

T ' Alt(4) is the group of rotations of Tetrahedron

Th = T ∪ −T

While (point group) Isom(P) ⊂ Aut(G (P)) (combinatorial group),
Mani, 1971: for any 3-polytope P, there is a map-isomorphic
3-polytope P ′ (so, with the same skeleton G (P ′) = G (P)), such
that the group Isom(P ′) of its isometries is isomorphic to Aut(G ).



8 families: symmetry groups

1 28 for {5, 6}v : C1, Cs , Ci ; C2, C2v , C2h, S4; C3, C3v , C3h, S6;
D2, D2h, D2d ; D3, D3h, D3d ; D5, D5h, D5d ; D6, D6h, D6d ; T ,
Td , Th; I , Ih (Fowler-Manolopoulos, 1995)

2 16 for {4, 6}v : C1, Cs , Ci ; C2, C2v , C2h; D2, D2h, D2d ; D3,
D3h, D3d ; D6, D6h; O, Oh (Deza-Dutour, 2005)

3 5 for {3, 6}v : D2, D2h, D2d ; T , Td (Fowler-Cremona,1997)

4 2 for {2, 6}v : D3, D3h (Grűnbaum-Zaks, 1974)

5 18 for {3, 4}v : C1, Cs , Ci ; C2, C2v , C2h, S4; D2, D2h, D2d ; D3,
D3h, D3d ; D4, D4h, D4d ; O, Oh (Deza-Dutour-Shtogrin, 2003)

6 5 for {2, 4}v : D2, D2h, D2d ; D4, D4h, all in [D2,D4h] (same)

7 3 for {1, 3}v : C3, C3v , C3h (Deza-Dutour, 2010)

8 22 for {2, 3}v : C1, Cs , Ci ; C2, C2v , C2h, S4; C3, C3v , C3h, S6;
D2, D2h, D2d ; D3, D3h, D3d ; D6, D6h; T , Td , Th (same)

38 for icosahedrites ({3, 4}, 5)- (same, 2011).



8 families: Goldberg-Coxeter construction GCk,l(.)
With T={T ,Td ,Th}, O={O,Oh}, I={I , Ih}, C1={C1,Cs ,Ci},
Cm={Cm,Cmv ,Cmh, S2m}, Dm={Dm,Dmh,Dmd}, we get

1 for ({5, 6}, 3)-: C1, C2, C3, D2, D3, D5, D6, T, I

2 for ({2, 3}, 6)-: C1, C2, C3, D2, D3, {D6,D6h}, T
3 for ({4, 6}, 3)-: C1, C2\S4, D2, D3, {D6,D6h}, O
4 for ({3, 4}, 4)-: C1, C2, D2, D3, D4, O

5 for ({3, 6}, 3-: D2, {T ,Td} {D3,D3h}
6 for ({2, 4}, 4)-: D2, {D4,D4h}
7 for ({2, 6}, 3)-: {D3,D3h}
8 for ({1, 3}, 6)-: C3\S6={C3,C3v ,C3h}

if ({3, 4}, 5)-: C1, C2, C3, C4, C5, D2, D3, D4, D5, T, O, I.

Spheres of blue symmetry are GCa,b from 1st such; so, given by
one complex (Gaussian for k=4, Eisenstein for k=3, 6) parameter.
Goldberg, 1937 and Coxeter, 1971: {5, 6}v (I , Ih), {4, 6}v (O,Oh),
{3, 6}v (T ,Td). Dutour-Deza, 2004 and 2010: for other cases.



8 families: Goldberg-Coxeter construction GCk,l(.)
With T={T ,Td ,Th}, O={O,Oh}, I={I , Ih}, C1={C1,Cs ,Ci},
Cm={Cm,Cmv ,Cmh, S2m}, Dm={Dm,Dmh,Dmd}, we get

1 for ({5, 6}, 3)-: C1, C2, C3, D2, D3, D5, D6, T, I

2 for ({2, 3}, 6)-: C1, C2, C3, D2, D3, {D6,D6h}, T
3 for ({4, 6}, 3)-: C1, C2\S4, D2, D3, {D6,D6h}, O
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5 for ({3, 6}, 3-: D2, {T ,Td} {D3,D3h}
6 for ({2, 4}, 4)-: D2, {D4,D4h}
7 for ({2, 6}, 3)-: {D3,D3h}
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Goldberg, 1937 and Coxeter, 1971: {5, 6}v (I , Ih), {4, 6}v (O,Oh),
{3, 6}v (T ,Td). Dutour-Deza, 2004 and 2010: for other cases.



VI. Goldberg-Coxeter

construction



Goldberg-Coxeter construction GCk ,l(.)

Take a 3- or 4-regular plane graph G . The faces of dual graph
G ∗ are triangles or squares, respectively.

Break each face into pieces according to parameter (k , l).
Master polygons below have area A(k2+kl+l2) or A(k2+l2),
where A is the area of a small polygon.

3−valent case

k=5

l=2
l=2

k=5

4−valent case



Gluing the pieces together in a coherent way

Gluing the pieces so that, say, 2 non-triangles, coming from
subdivision of neighboring triangles, form a small triangle, we
obtain another triangulation or quadrangulation of the plane.

The dual is a 3- or 4-regular plane graph, denoted GCk,l(G );
we call it Goldberg-Coxeter construction.

It works for any 3- or 4-regular map on oriented surface.



GCk,l(Cube) for (k , l) = (1, 0), (1, 1), (2, 0), (2, 1)

1,0 1,1

2,0 2,1



Goldberg-Coxeter construction from Octahedron

1,0 1,1 2,0

2,1



The case (k , l) = (1, 1)

3-regular case
GC1,1 is called leapfrog

(13 -truncation of the dual)
truncated Octahedron

4-regular case
GC1,1 is called medial

(12 -truncation)
Cuboctahedron



The case (k , l) = (k , 0) of GCk ,l(G ): k-inflation

Chamfering (quadrupling) GC2,0(G ) of 8 1st ({a, b}, k)-spheres,
(a, b)=(2, 6), (3, 6), (4, 6), (5, 6) and (2, 4), (3, 4), (1, 3), (2, 3), are:

D3h (122) Td (86) Oh (128) Ih (2012)

D4h (44) Oh (86) C3v (62) D6h (43, 62)

For 4-regular G , GC2k2,0(G )=GCk,k(GCk,k(G )) by (k+ki)2=2k2i .



First four GCk ,l(3× K2) and GCk ,l(4× K2)

All ({2, 6}, 3)-spheres are Gk,l(3×K2): D3h, D3h, D3 if l=0, k, else.

D3h 3× K2 D3h leapfrog D3h G2,0 D3 G2,1

D4h 4× K2 D4h medial D4h G2,0 D4 G2,1



First four GCk ,l(6×K2) and GCk ,l(Trifolium)

D6h D3d G1,1 D6h G2,0 D6 G2,1

C3v C3h G1,1 C3v G2,0 C3 G2,1

All ({2, 3}, 6)-spheres are Gk,l(6×K2): C3v , C3h, C3 if l=0, k , else.



Plane tilings {44}, {36} and complex rings Z[i ], Z[w ]

The vertices of regular plane tilings {44} and {36} form each,
convenient algebraic structures: lattice and ring. Path-metrics
of those graphs are l1- 4-metric and hexagonal 6-metric.

{44}: square lattice Z2 and ring Z[i ]={z=k+li : k , l ∈ Z} of
Gaussian integers with norm N(z)=zz=k2+l2=||(k , l)||2.

{36}: hexagonal lattice A2={x ∈ Z3 : x0+x1+x2=0} and ring
Z[w ]={z=k+lw : k, l ∈ Z}, where w=e i

π
3 =1

2(1+i
√

3), of
Eisenstein integers with norm N(z)=zz=k2-kl+l2. We
identify points x=(x0, x1, x2) ∈ A2 with x0+x1w ∈ Z[w ].

A natural number n =
∏

i p
αi
i is of form n=k2+l2 if and only

if any αi is even, whenever pi ≡ 3(mod 4) (Fermat Theorem).
It is of form n = k2 + kl + l2 if and only if pi ≡ 2 (mod 3).

The first cases of non-unicity with gcd(k , l)=gcd(k1, l1)=1
are 91=92+9+12=62+30+52 and 65=82+12=72+42.
The first cases with l=0 are 72=52+15+32 and 52=42+32.
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∏
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The bilattice of vertices of hexagonal plane tiling {63}

We identify the hexagonal lattice A2 (or equilateral triangular
lattice of the vertices of the regular plane tiling {36}) with
Eisenstein ring (of Eisenstein integers) Z[w ].

The hexagon centers of {63} form {36}. Also, with vertices of
{63}, they form {36}, rotated by 90◦ and scaled by 1

3

√
3.

The complex coordinates of vertices of {63} are given by
vectors v1=1 and v2=w . The lattice L=Zv1+Zv2 is Z[w ].

The vertices of {63} form bilattice L1 ∪ L2, where the bipartite
complements, L1=(1+w)L and L2=1+(1+w)L, are stable
under multiplication. Using this,

GCk,l(G ) for 6-regular graph G can be defined similarly to 3- and
4-regular case, but only for k + lw ∈ L2, i.e. k ≡ l ± 1 (mod 3).



Ring formalism

Z[i ] (Gaussian integers) and Z[ω] (Eisenstein integers) are
unique factorization rings

Dictionary

3-regular G 4-regular G 6-regular G
the ring Eisenstein Z[ω] Gaussian Z[i ] Eisenstein Z[ω]

Euler formula
∑

i (6− i)pi=12
∑

i (4− i)pi=8
∑

i (3− i)pi=6
curvature 0 hexagons squares triangles
ZC-circuits zigzags central circuits both
GC11(G ) leapfrog graph medial graph or. tripling



Goldberg-Coxeter operation in ring terms

Associate z=k+lw (Eisenstein) or z=k+li (Gaussian integer)
to the pair (k, l) in 3-,6- or 4-regular case. Operation GCz(G )
correspond to scalar multiplication by z=k+lw or k+li .

Writing GCz(G ), instead of GCk,l(G ), one has:

GCz(GCz ′(G )) = GCzz ′(G )

If G has v vertices, then GCk,l(G ) has vN(z) vertices, i.e.,
v(k2+l2) in 4-regular and v(k2+kl+l2) in 3- or 6-reg. case.

GCz(G ) has all rotational symmetries of G in 3- and 4-regular
case, and all symmetries if l=0, k in general case.

GCz(G )=GCz(G ) where G differs by a plane symmetry only
from G . So, if G has a symmetry plane, we reduce to 0≤l≤k ;
otherwise, graphs GCk,l(G ) and GCl ,k(G ) are not isomorphic.
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case, and all symmetries if l=0, k in general case.

GCz(G )=GCz(G ) where G differs by a plane symmetry only
from G . So, if G has a symmetry plane, we reduce to 0≤l≤k ;
otherwise, graphs GCk,l(G ) and GCl ,k(G ) are not isomorphic.



GCk,l(G ) for 6-regular plane graph G and any k , l

Bipartition of G ∗ gives vertex 2-coloring, say, red/blue of G .

Truncation Tr(G ) of {1, 2, 3}v is a 3-regular {2, 4, 6}6v .

Coloring white vertices of G gives face 3-coloring of Tr(G ).
White faces in Tr(G ) correspond to such in GCk,l(Tr(G )).

For k ≡ l ± 1 (mod 3), i.e. k + lw ∈ L2, define GCk,l(G ) as
GCk.l(Tr(G )) with all white faces shrinked.

If k ≡ l ((mod 3), faces of Tr(G ) are white in GCk,l(Tr(G )).
Among 3 faces around each vertex, one is white. Coloring
other red gives unique 3-coloring of GCk,l(Tr(G )). Define
GCk,l(G ) as pair G1,G2 with Tr(G1)=Tr(G2)=GCk,l(Tr(G ))
obtained from it by shrinking all red or blue faces.

GC1,0(G ) = G and GC1,1(G ) is oriented tripling.



Oriented tripling GC1,1(G ) of 6-regular plane graph G

Let C1,C2 be bipartite classes of G ∗. For each Ci , oriented
tripling GC1,1(G ) is 6-regular plane graph OrCi

(G ) coming by
each vertex of G → 3 vertices and 4 3-gonal faces of OrCi

(G ).
Symmetries of OrCi

(G ) are symmetries of G preserving Ci .

Orient edges of Ci clockwise. Select 3 of 6 neighbors of each
vertex v : {2, 4, 6} are those with directed edge going to v ; for
{1, 5, 5}, edges go to them.

4

6

1

23

5
1

2

3
4

5

6

Any z=k+lw 6=0 with k≡l (mod 3) can be written as
(1+w)s(k ′+l ′w)w , where s≥0 and k ′≡l ′ ± 1 (mod 3).
So, it holds reduction GCk,l(G )=Gk ′,l ′(Or

s(G )).



Examples of oriented tripling GC1,1(G )

Below: {2, 3}2 and {2, 3}4 have unique oriented tripling.

2 D6h 6 D3d 4 Td 12 Th

1 C3v 3 C3h 9 C3v 27 C3h 81 C3v

Above: first 4 consecutive oriented triplings of the Trifolium.
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VII. Parameterizing

({a, b}, k)-spheres



Example: construction of the ({3, 6}, 3)-spheres in Z [ω]

In the central triangle
ABC, let A be the origin
of the complex plane

The corresponding
triangulation

All ({3, 6}, 3)-spheres
come this way; two
complex parameters
in Z [ω] defined by
the points B and C



Parameterizing standard (Cb = 0) ({a, b}, k)-spheres
Thurston, 1998 implies: ({a, b}, k)-spheres have pa-2 parameters
and the number of v -vertex ones is O(vm−1) if m=pa-2 > 2.
Idea: since b-gons are of zero curvature, it suffices to give relative
positions of a-gons having curvature 2k − a(k − 2) > 0.
At most pa − 1 vectors will do, since one position can be taken 0.
But once pa − 1 a-gons are specified, the last one is constrained.
The number of m-parametrized spheres with at most v vertices is
O(vm) by direct integration. The number of such v -vertex spheres
is O(vm−1) if m > 1, by a Tauberian theorem.

Goldberg, 1937: {a, 6}v (highest 2 symmetries): 1 parameter

Fowler and al., 1988: {5, 6}v (D5, D6 or T ): 2 parameters.

Grűnbaum-Motzkin, 1963: {3, 6}v : 2 parameters.

Deza-Shtogrin, 2003: {2, 4}v ; 2 parameters.

Thurston, 1998: {5, 6}v : 10 (again complex) parameters.
Graver, 1999: {5, 6}v : 20 integer parameters.

Rivin, 1994: parameter desciption by dihedral angles.
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Parameterizing (R , k)-spheres with mini∈R Ci ≥ 0

Thurston, 1998 parametrized (dually, as triangulations) such
(R, 3)-spheres, i.e. 19 series of ({3, 4, 5, 6}, 3)-spheres.
In general, such (R, k)-spheres are given by m=

∑
3≤i< 2k

k−2
pi − 2

complex parameters z1, . . . , zm.
The number of vertices is expressed as a non-degenerate Hermitian
form q=q(z1, . . . , zm) of signature (1,m − 1).
Let Hm be the cone of z=(z1, . . . , zm) ∈ Cm with q(z) > 0.
Given (R, k)-sphere is described by different parameter sets; let
M=M({p3, . . . , pm}, k) be the discrete linear group preserving q.
For k=3, the quotient Hm/(R>0 ×M) is of finite covolume
(Thurston, 1998, actually, 1993). Sah, 1994 deduced from it that
the number of corresponding spheres grows as O(vm−1).
Dutour partially generalized above for other k and surface maps.



8 families: number of complex parameters by groups

1 {5, 6}v C1(10), C2(6), C3(4), D2(4), D3(3), D5(2), D6(2),
T(2), {I , Ih}(1)

2 {4, 6}v C1(4), C2\S4(3), D2(2), D3(2), {D6,D6h}(1),
{O,Oh}(1)

3 {3, 4}v C1(6), C2(4), D2(3), D3(2), D4(2), {O,Oh}(1)

4 {2, 3}v C1(4), C2(3?), C3(3?), D2(2?), D3(2?), T(1),
{D6,D6h}(1)

5 {3, 6}v D2(2), {T ,Td}(1)

6 {2, 4}v D2(2), {D4,D4h}(1)

7 {2, 6}v {D3,D3h}(1)

8 {1, 3}v {C3,C3v ,C3h}(1)

Thurston, 1998 implies: ({a, b}, k)-spheres have pa-2 parameters
and the number of v -vertex ones is O(vm−1) if m=pa-2 > 1.



Number of complex parameters

{5, 6}v
Group #param.

C1 10
C2 6

C3,D2 4
D3 3

D5,D6,T 2
I 1

{3, 4}v
Group #param.

C1 6
C2 4
D2 3

D3,D4 2
O 1

{4, 6}v
Group #param.

C1 4
C2 3

D2,D3 2
D6,O 1

{2, 3}v
Group #param.

C1 4
C2,C3 3?
D2,D3 2?
D6,T 1

{3, 6}v - and {2, 4}v : 2 complex parameters but 3 natural ones will
do: pseudoroad length, number of circumscribing railroads, shift.



VIII. Railroads and tight

({a, b}, k)-spheres



ZC-circuits

The edges of any plane graph are doubly covered by zigzags
(Petri or left-right paths), i.e., circuits such that any two but
not three consecutive edges bound the same face.

The edges of any Eulerian (i.e., even-valent) plane graph are
partitioned by its central circuits (those going straight ahead).

A ZC-circuit means zigzag or central circuit as needed.
CC- or Z-vector enumerate lengths of above circuits.

A railroad in a 3-, 4- or 6-regular plane graph is a circuit of 6-,
4- or 3-gons, each adjacent to neighbors on opposite edges.
Any railroad is bound by two ”parallel” ZC-circuits. It (any if
4-, simple if 3- or 6-regular) can be collapsed into 1 ZC-circuit.
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Railroad in a 6-regular sphere: examples

APrism3 with 2 base 3-gons doubled is the {2, 3}6 (D3d) with
CC-vector (32, 43), all five central circuits are simple.
Base 3-gons are separated by a simple railroad R of six 3-gons,
bounded by two parallel central 3-circuits around them. Collapsing
R into one 3-circuit gives the {2, 3}3 (D3h) with CC-vector (3; 6).

D3d (32, 43) D3h (3; 6) Td (34)

Above {2, 3}4 (Td) has no railroads but it is not strictly tight, i.e.
no any central circut is adjacent to a non-3-gon on each side.



Railroads flower: Trifolium {1, 3}1

Railroads can be simple or self-intersect, including triply if k = 3.
First such Dutour ({a, b}, k)-spheres for (a, b) = (4, 6), (5, 6) are:

{4, 6}66(D3h) twice {5, 6}172(C3v )

Which plane curves with at most triple self-intersectionss come so?



Number of ZC-circuits in tight ({a, b}, k)-sphere

Call an ({a, b}, k)-sphere tight if it has no railroads.

≤ 15 for {5, 6}v Shtogrin-Deza-Dutour, 2011

≤ 9 for {4, 6}v and {2, 3}v Deza-Dutour, 2005 and 2010

≤ 3 for {2, 6}v and {1, 3}v same

≤ 6 for {3, 4}v Deza-Shtogrin, 2003

Any {3, 6}v has ≥ 3 zigzags with equality iff it is tight. All
{3, 6}v are tight iff v

4 is prime > 2 and none iff it is even

Any {2, 4}v has ≥ 2 central circuits with equality iff it is
tight. There is a tight one for any even v .

First tight ones with max. of ZC-circuits are GC21({a, b}min):
{5, 6}140(I ), {2, 6}14(D3), {3, 4}30(0); and {a, b}min: {3, 6}4(Td),
{2, 4}2(D4h) with ZC=(2815), (143), (106), (43), (22), all simple.
{4, 6}88(D2h) and {2, 3}44(D3h) are smallest with 8 zigzags.
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Maximal number Mv of central circuits in any {2, 3}v

Mv = v
2 + 1, v

2 + 2 for v ≡ 0, 2 (mod 4). It is realized by the

series of symmetry D2d with CC-vector 2
v
2 , 2v0,v and of

symmetry D2h with CC-vector 2
v
2 , v2

0, v−2
4

if v ≡ 0, 2 (mod 4).

For odd v , Mv is b v3 c+ 3 if v ≡ 2, 4, 6 (mod 9) and b v3 c+ 1,
otherwise. Define tv by v−tv

3 = b v3 c. Mv is realized by the
series of symmetry C3v if v ≡ 1 (mod 3) and D3h, otherwise.
CC-vector is 3b

v
3
c, (2b v3 c+ tv )3

0,b v−2tv
9
c if v ≡ 2, 4, 6 (mod 9)

and 3b
v
3
c, (2v + tv )0,v+2tv , otherwise.



Smallest CC-knotted or Z-knotted {2, 3}v

The minimal number of central circuits or zigzags, 1, have
CC-knotted and Z-knotted {2, 3}v . They correspond to plane
curves with only triple self-intersection points. For v≤16,
there are 1, 2, 4, 7, 9, 12 Z-knotted if v=3, 7, 9, 11, 13, 15 and
1, 2, 2, 4, 11, 9, 1, 19 CC-knotted if v=4, 6, 8, 10, 12, 14, 15, 16.

Conjecture (holds if v≤54): any Z-knotted {2, 3}v has odd v
and a CC-knotted {2, 3}v is Z-knotted if and only if v is odd.

4 D2 6 D3 6 C2 8 D2 15 C1



IX. Tight pure

({a, b}, k)-spheres



Tight ({a, b}, k)-spheres with only simple ZC-circuits

Call ({a, b}, k)-sphere pure if any of its ZC-circuits is simple,
i.e. has no self-intersections.

Any ({3, 6}, 3)- or ({2, 4}, 4)-sphere is pure. They are tight if
and only if have three or, respectively, two ZC-circuits.

Any ZC-circuit of {2, 6}v or {1, 3}v self-intersects.

The number of tight pure ({a, b}, k)-spheres is:

1 9? for {5, 6}v computer-checked for v ≤ 200

2 2 for {4, 6}v
3 8 for {3, 4}v
4 5 for {2, 3}v
5 ∞ for {2, 4}v : ≥ 1 for any possible (i.e. even) v

6 ∞ for {3, 6}v : ≥ 1 for any odd v
4

(all if it is prime > 2 and none if it is even)

7 0 for {2, 6}v and {1, 3}v
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All tight ({4, 6}, 3)-spheres with only simple zigzags

There are exactly two such spheres: Cube and its leapfrog
GC11(Cube), truncated Octahedron.

8 Oh (64) 24 Oh (126)

Proof is based on a) The size of intersection of two simple zigzags
in any ({4, 6}, 3)-sphere is 0, 2, 4 or 6 and
b) Tight ({4, 6}, 3)-sphere has at most 9 zigzags.

For ({2, 3}, 6)-spheres, a) holds also, implying a similar result.



All tight ({4, 6}, 3)-spheres with only simple zigzags

There are exactly two such spheres: Cube and its leapfrog
GC11(Cube), truncated Octahedron.

8 Oh (64) 24 Oh (126)

Proof is based on a) The size of intersection of two simple zigzags
in any ({4, 6}, 3)-sphere is 0, 2, 4 or 6 and
b) Tight ({4, 6}, 3)-sphere has at most 9 zigzags.

For ({2, 3}, 6)-spheres, a) holds also, implying a similar result.



All tight ({3, 4}, 4)-spheres with only simple central circuits
The medial of a connected plane graph G = (X ,E ) is the graph
Med(G ) of edges of G with two being adjacent if they have a
common vertex and bound the same face. Med(G ) is a 4-regular
plane graph; its central circuits correspond to zizags of G .
1st and 2nd below are the medials of Tetrahedron and Cube.

6 Oh (43)
Octahedron

12 Oh (64)
GC11(Oct.) 12 D3h (64)

14 D4h

(62, 82)

20 D2d (85)
22 D2h

(83, 102)
30 O (106)
GC21(Oct.)

32 D4h

(104, 122)



8 tight ({5, 6}, 3)-spheres with only simple zigzags

20 Ih (106) 28 Td (127) 48 D3 (169) 60 Ih (1810)

76 D2d

(224, 207)
88 T (2212) 92 Th

(246, 226)
140 I , (2815)

The medials of 1− 4, 6, 8-th above and of next one form complete
arrangements of pseudocircles (CAP), i.e. any two intersect twice.
Among 9, only 1, 4, 6, 8-th above are zigzag-transitive.



Other such 60-vertex ({5, 6}, 3)-sphere

60 Ih (1810) 60 D3 (1810)

This pair was first answer on a question in Grűnbaum, 1967, 2003
Convex Polytopes about existence of different simple polyhedra
with the same p-vector and Z -vector.
Both have 60 vertices of degree 3; 12 5- and 20 6-gonal faces; and
10 (simple) zigzags of length 18 each. But they are different and
their groups have, 1 and 3 orbits, respectively, on zigzags.



Pseudocircles arrangements from tight pure spheres

A simple central circuit can be seen as a Jordan curve, i.e. a
simple and closed plane curve.

A (k , t)-AP (arrangements of pseudocircles) is a set of k
Jordan curves where any two intersect (triple or tangent points
excluded) exactly in t points; so, there are t(k-1) points.
It is a tight pure 4-regular graph with k central circuits of
length t(k-1) intersecting pairwise in t points.
It is a projection of a link; Borromean rings is (3, 2)-AP.

For F20(Ih),F28(Td),F48(D3),F60(Ih),F60D3,F88(T ),F140(I ),
their medials form (k , 2)-APs with k = 6, 7, 9, 10, 10, 12, 15.

The medials of truncated Tetrahedron, Cube, Icosahedron,
Dodecahedron form (3, 6)-,(4, 6)-,(10, 2)-,(6, 6)-APs.

For Oc6(Oh),Oc12(Oh),Oc12(D3h),Oc20(D2d),Oc30(0), their
central circuits form (k , 2)-APs with k = 3, 4, 4, 5, 6.



Tight ({2, 3}, 6)-spheres with only simple ZC-circuits

2 D6h (23)
(62)

4 Td (34)
(64)

6 D3 no
(12, 83)

8 D2d (54, 4)
no

D6h (43, 62)
(86) no

12 Th (66)
(126)

14 D6 no
(146)

All CC-pure, tight: Nrs. 1,2,4,5,6 (Nrs. 3,7 are not CC-pure).
All Z-pure, tight: Nrs. 1,2,3,6,7 (4 is not Z-pure, 5 is not Z-tight).
1st, 3rd are strictly CC-, Z-tight: all ZC-circuits sides touch 2-gons



X. Other fullerene analogs:

({a, b, c}, k)-disks (pc=1)



Other fullerene-like non-standard (mini∈R κi < 0) spheres

Related non-standard (R, k)-spheres with κmax{i∈R}<0, are:

G -fulleroids (Deza-Delgado, 2000; Jendrol-Trenkler, 2001 and
Kardos, 2007): ({5, b}, 3)-spheres with b≥7 and symmetry G .

b-Icosahedrites: ({3, b}, 5)-spheres with b ≥ 4. They have
p3=(3b − 10)pb+20 3-gons and v=2(b − 3)pb+12 vertices.
Snub Cube and Snub Dodecahedron are the cases
(b, v ; group)=(4, 24;O) and (5, 60; I ).

Haeckel, 1887: ({5, 6, c}, 3)-spheres with c = 7, 8 representing
skeletons of radiolarian zooplankton Aulonia hexagona.

({a, b, c}, k)-disk is an ({a, b, c}, k)-sphere with pc = 1; so,
its v= 2

k−2(pa-1+pb)= 2
2k−a(k−2)(a+c+pb(b-a)) and (setting

b′= 2k
k−2) pa=b′+c

b′−a+pb
b−b′
b′−a . So, pa=b+c

b−a if b=b′ (8 families).

An ({a, b, c}, k)-disk is non-standard iff max{a, b, c} > 2k
k−2 .

Fullerene c-disk is the case (a, b, c ; k) = (5, 6, c ; 3) of above.
So, they have p5 = c + 6 and v = 2(p6 + c + 5) vertices.



Fullerene c-disks: big picture

Fullerene c-polycycle: an c-gon partitioned into 5- and 6-gons
with vertices of degree 3 inside and 3 or 2 on the c-gon.

Fullerene c-disk: full. c-polycycle without vertices of degree 2;
so, p5 = p6 + 6. If c ∈ {5, 6}, it is a fullerene without a face.

Fullerene c-patch: full. c-polycycle which is a fullerene’s part;
so, p5 ≤ 12. It is a fullerene c-disk if and only if c ∈ {5, 6}.
Theorem: full. c-disk with a face having ≥2 common edges
with c-gon (so, non-3-connected) exists if and only if c ≥ 8.
So, any fullerene c-disk with 3 ≤ c ≤ 7 is polyhedral.
Conjecture (checked for c ≤ 20):
1) minimal fullerene c-disk has 2(c + 11)vertices if c ≥ 13.
2) Only 3 gap full. c-disks: (c , v)=(5, 22), (3, 24), (1, 42).

Fullerene c-thimble: a full. c-disk with only 5-gons adjacent
to the c-gon. It exists if and only if c ≥ 5, always polyhedral.
Conjecture: minimal fullerene c-thimble has 5c − 5 or 5c − 6
vertices for odd or even, respectively, c ≥ 5.



Reducibility of fullerene c-disks

In a full. c-disk, a zigzag is an edge-circuit alternating left and
right turns. The zigzags doubly cover the edges.

A belt is simple circuit of 6-gons, adjacent to their neighbors
on opposite faces. It is bounded by 2 disjoint simple zigzags.
Call a fullerene c-disk is reducible if it has a belt.

The belts of a full. c-thimble form a cylinder. So, c-thimbles
are cuts of full. nanotubes: c-belt → two c-rings of 5-gons.

Any simple zigzag in an irreducible full. c-disk has adjacent
5-gon on each side and intersects any other simple zigzag.
So, the number of simple zigzags is at most 5(c+6)

2 .

Each zigzag of an irreducible pure (all zigzags are simple)
fullerene, is adjacent to at least two 5-gons on each side.
So, their number is ≤ 5(6+6)

4 =15. F140(I ) has Z -vector 2815.

Conjecture: pure irreducible fullerenes are only 9 fullerenes
Fv (G ) with (v ,G )=(20, Ih), (28,Td), (48,D3), (60, Ih) and
(60,D3), (76,D2d), (88,T ), (92,Th), (140, I ).



Minimal fullerene c-disks for 1 ≤ c ≤ 8

It is 1-vertex-, 1-edge-truncated, usual F20, F24 for c=3, 4, 5, 6.
It comes from minimal 4-disk for c=2: add edge with 2-gon on it.
Checked for c≤20: it has p6=14, 6, 3, 2, 0, 1, 3, 4, 6, 7, 8, 5 and =6
if 1≤c≤12 and c≥13. Unique unless 2, 3, 10 for c=9, 10, 11.

1 40 Cs 2 26 C2v 3 22 C3v 4 22 C2v

5 20 Ih 6 24 D6d 7 30 Cs 8 34 C2v



Minimal fullerene c-disks for c ≥ 9

9-2 40
C3v

10-3 44
C2v

11-10 48
Cs 12 44 C2v

13 48 Cs 14 50 C2 15 52 Cs 16 54 C2

Conjecture: for c ≥ 13, the only minimal c-disk is c-pentatube
B+Hex3+Penc−12+Hex3+B (symmetry Cs/C2 for odd/even c).



Symmetries of fullerene c-disks

Their groups: Cm,Cmv with m ≡ 0(mod c) (since any
symmetry should stabilize unique c-gonal face) and
m ∈ {1, 2, 3, 5, 6} since the axis pass by a vertex, edge or face.
The minimal such 8- and 9-disks are given below.

8 34 C2v 8 36 Cs 8 38 C1 8 38 C2

9 40 C3v 9 40 Cs 9 42 C1 9 52 C3



XI. Icosahedrites:

({3, 4}, 5)-spheres



Icosahedrites, i.e., ({3, 4}, 5)-spheres

They have p3 = 2pb + 20 and v = 2pb + 12 vertices.

Their number is 1, 0, 1, 1, 5, 12, 63, 246, 1395, 7668, 45460
for v = 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32. It grows at
least exponentially with v .

pa is fixed in for standard ({a, b}, k)-spheres permitting
Goldberg-Coxeter construction and parametrization of graphs
which imply the polynomial growth of their number. It does
not happen for icosahedrites; no parametrization for them.

A-operation keeps symmetries; B-operation: only rotational ones.



Proof for the number of icosahedrites
A weak zigzag ia a left/right, but never extreme, edge-circuit.
If a v -vertex icosahedrite has a simple weak zigzag of length 6, a
(v+6)-vertex one come by inserting a corona (6-ring of three
4-gons alternated by three pairs of adjacent 3-gons) instead of it.
But such spheres exist for v=18, 20, 22; so, for v≡0, 2, 4(mod 6).
There are two options of inserting corona; so, the number of
v -vertex icosahedrites grows at least exponentially.

12 Ih
wZ=610

Z=106

18 D3

62, 83; 540,9
9027,18

20 D2d

64, 202; 1820,3
104; 3023,0

22 D5h

610; 5015,0
102; 9015,20

An usual (strong) zigzag is a left/right, both extreme, edge-circuit.



38 symmetry groups of icosahedrites

Agregating C1={C1,Cs ,Ci}, Cm={Cm,Cmv ,Cmh, S2m}, Dm=
{Dm,Dmh,Dmd}, T={T ,Td ,Th}, O={O,Oh}, I={I , Ih},
all 38 symmetries of ({3, 4}, 5)-spheres are:
C1, Cm, Dm for 2≤m≤5 and T, O, I.

Any group appear an infinite number of times since one gets
an infinity by applying A-operation iteratively.

Group limitations came from k-fold axis only. Is it occurs for
all ({a, b}, k)-spheres with b-faces of negative curvature?

Examples (minimal whenever v ≤ 32) are given below:

22 C1 22 Cs 32 Ci 72 Oh



Minimal ({3, 4}, 5)-spheres of 5-fold symmetry

It exists iff p4 ≡ 0 (mod 5), i.e., v = 2p4 + 12 ≡ 2 (mod 10).

32 D5 22 D5h 32 D5d 12 Ih Icosahed.

52 C5 62 C5h 72 C5v 72 S10



Minimal ({3, 4}, 5)-spheres of 4-fold symmetry

It exists iff p4 ≡ 2 (mod 4), i.e., v = 2p4 + 12 ≡ 0 (mod 8).

32 D4 16 D4d 40 D4h 24 O Snub cube

40 C4 40 C4v 32 C4h 32 S8

Icosahedron, Snub Cube and, with (b, v ;G )=(5, 60; I ), Snub
Dodecahedron are the only vertex-transitive ({3, b}, 5)-spheres.



Minimal ({3, 4}, 5)-spheres of 3-fold symmetry

It exists iff p4 ≡ 0 (mod 3), i.e., v = 2p4 + 12 ≡ 0 (mod 6).

18 D3 24 D3d 30 D3h 36 Td

30 C3 30 C3v 24 C3h 24 S6



Minimal ({3, 4}, 5)-spheres of 2-fold symmetry

20 D2 20 D2d 24 D2h 36 Th

20 C2 22 C2v 28 C2h 28 S4



Face-regular ({3, b}, 5)-spheres

A 3-connected map (on sphere or torus) is pRi face-regular if
any p-gonal face is adjacent to exactly i p-gons.

No ({3, b}, 5)-sphere, besides Icosahedron 3R3, is 3Ri .

Clearly, bRj ({3, b}, 5)-sphere has j pb2 (b − b)-edges. So,
bRj with odd j implies that 4 divides v = 2pb(b − 3) + 12.

There is infinity of bRj ({3, b}, 5)-spheres for j = 0, 1, 2.

20 D2 4R1

G4 = 2K2

36 Td 4R1

G4 = 6K2

22 D5h 4R2

G4 = C5

24 D3d 4R2

G4 = C6



b-gon-transitive of ({3, b}, 5)-spheres

Icosahedron (snub APrism3) is regular. So, let pb > 0.

Snub APrismb has v = 4b vertices (2 orbits of size 2b),
2 b-gons (1 orbit) and 6b 3-gons (2 orbits of size 3b).
Its group G is Dbd for b ≥ 4.

With (b, v ;G ) = (4, 24;O), (5, 60; I ), Snub Cube and Snub
Dodecahedron are only vertex-transitive ({3, b}, 5)-spheres.
They are also b-gon-transitive and have 2 orbits of triangles.

Do other b-gon-transitive ({3, b}, 5)-spheres or
({3, b}, 5)-spheres with at most 3 orbits of faces exist?



XII. Standard ({a, b}, k)-maps
on surfaces



Standard (R , k)-maps

Given R ⊂ N and a surface F2, an (R, k)-F2 is a k-regular
map M on surface F2 whose faces have gonalities i ∈ R.

Euler characteristic χ(M) is v − e + f , where v , e and
f =

∑
i pi are the numbers of vertices, edges and faces of M.

Since kv=2e=
∑

i ipi , Euler formula χ = v − e + f becomes
Gauss-Bonnet-like one χ(M) =

∑
i piκi .

Again, let our maps be standard, i.e., mini∈R(1 + i
k −

i
2) = 0.

So, M=max{i ∈ R}= 2k
k−2 and (M, k)=(6, 3), (4, 4), (3, 6).

There are infnity of standard maps (R, k)-F2, since the
number pM of flat (κM=0) faces is not restricted.

Also, χ ≥ 0 with χ = 0 if and only if R = {m}.
So, F2 is S2, T2, P2, K2 with χ = 2, 0, 1, 0, respectively.

Such ({a, b}, k)-F2 map has b= 2k
k−2 , pa= χb

b−a , v= 1
k (apa+bpb)

So, (a=b, k)=(6, 3), (3, 6), (4, 4) if F2 is T2 or K2.

But χ=p3−2p4
10 for icosahedrite maps ({3, 4}, 5) (non-standard)

So, χ<0 is possible and χ=0 (i.e., F2=T2,K2) iff p3=2p4.



Digression on interesting non-standard ({5, 6, c}, 3)-maps

Such maps, generalizing fullerenes, have c ≥ 7. Examples are:

Haeckel, 1887: ({5, 6, c}, 3)-spheres with c = 7, 8 representing
skeletons of radiolarian zooplankton Aulonia hexagona

Fullerene c-disks (({5, 6, c}, 3)-spheres with pc = 1) if c ≥ 7
(Deza-Dutour-Shtogrin, 2011-2012)

G -fulleroids (Deza-Delgado, 2000; Jendrol-Trenkler, 2001 and
Kardos, 2007): ({5, b}, 3)-spheres with b≥7 and symmetry G

Azulenoids: ({5, 6, 7}, 3)-tori; so, g = 1, p5 = p7
(Kirby-Diudea, 2003, et al.)

Schwartzits: ({5, 6, c}, 3)-maps on minimal surfaces of
constant negative curvature (g ≥ 2) with c = 7, 8
(Terrones-MacKay, 1997, et al.)
Knor-Potocnik-Siran-Skrekovski, 2010: such ({6, c}, 3)-maps
exist for any g ≥ 2, p6 ≥ 0 and c = 7, 8, 9, 10, 12. For c = 7, 8
such polyhedral maps exist.



The ({a, b}, k)-maps on torus and Klein bottle

The connected closed (compact and without boundary) irreducible
surfaces are: sphere S2, torus T2 (two orientable), real projective
plane P2 and Klein bottle K2 with χ = 2, 0, 1, 0, respectively.

The maps ({a, b}, k)-T2 and ({a, b}, k)-K2 have a = b = 2k
k−2 ; so,

(a = b, k) should be (6, 3), (3, 6) or (4, 4).

We consider only polyhedral maps, i.e. no loops or multiple edges
(1- or 2-gons), and any two faces intersect in edge, point or ∅ only.

Smallest T2 and K2-embeddings for (a=b, k)=(6, 3), (3, 6), (4, 4):

as 6-regular triangulations: K7 and K3,3,3 (p3 = 14, 18);
as 3-regular polyhexes: Heawood graph (dual K7) and dual K3,3,3;
as 4-regular quadrangulations: K5 and K2,2,2 (p4 = 5, 6).

K5 and K2,2,2 are also smallest ({3, 4}, 4)-P2 and ({3, 4}, 4)-S2,
while K4 is the smallest ({4, 6}, 3)-P2 and ({3, 6}, 3)-S2.
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Smallest 3-regular maps on T2 and K2: duals K7, K3,3,3

3-regular polyhexes on T2, cylinder, Möbius surface, K2 are {63}’s
quotients by fixed-point-free group of isometries, generated by: two
translations, a transl., a glide reflection, transl. and glide reflection.



Smallest 3-regular maps on T2 and K2: duals K7, K3,3,3

3-regular polyhexes on T2, cylinder, Möbius surface, K2 are {63}’s
quotients by fixed-point-free group of isometries, generated by: two
translations, a transl., a glide reflection, transl. and glide reflection.



8 families: symmetry groups with inversion

The point symmetry groups with inversion operation are: Th, Oh,
Ih, Cmh,Dmh with even m and Dmd , S2m with odd m. So, they are

1 9 for {5, 6}v : Ci , C2h, D2h, D3d , D6h, S6, Th, D5d , Ih
2 7 for {2, 3}v : Ci , C2h, D2h, D3d , D6h, S6, Th

3 6 for {4, 6}v : Ci , C2h, D2h, D3d , D6h, Oh

4 6 for {3, 4}v : Ci , C2h, D2h, D3d , D4h, Oh

5 2 for {2, 4}v : D2h, D4h

6 1 for {3, 6}v : D2h

7 0 for {2, 6}v and {1, 3}v
8 Cf. 12 for icosahedrites (({3, 4}, 5)-spheres):

Ci , C2h, C4h, D2h, D4h, D3d , D5d , S6, S10, Th, Oh, Ih

(R, k)-maps on the projective plane are the antipodal quotients of
centrosymmetric (R, k)-spheres; so, halving their p-vector and v .



Smallest ({a, b}, k)-maps on the projective plane

The smallest ones for (a, b) = (4, 6), (3, 4), (3, 6), (5, 6) are:
K4 (smallest P2-quadrangulation), K5, 2-truncated K4, dual
K6 (Petersen graph), i.e., the antipodal quotients of Cube
{4, 6}8, {3, 4}10(D4h), {3, 6}16(D2h), Dodecahedron {5, 6}20.

The smallest ones for (a, b) = (2, 4), (2, 3) are points with 2,
3 loops; smallest without loops are 4×K2, 6×K2 but on P2.

4

3 2

2 3

1

1

{4, 6}4

3

1

4
2

2
5 3

1

{3, 4}5

5 1 2

4 6 3

3 8 7 4

2
1

5

{3, 6}8 {2, 4}2



Smallest ({5, 6}, 3)-P2 and ({3, 4}, 5)-P2

The Petersen graph (in positive role) is the smallest P2-fullerene.
Its P2-dual, K6, is the smallest P2-icosahedrite (half-Icosahedron).
K6 is also the smallest (with 10 triangles) triangulation of P2.



6 families on projective plane: parameterizing

1 {5, 6}v : Ci , C2h, D2h, S6, D3d , D6h, Th, D5d , Ih
2 {2, 3}v : Ci , C2h, D2h, S6, D3d , D6h, Th

3 {4, 6}v : Ci , C2h, D2h, D3d , D6h, Oh

4 {3, 4}v : Ci , C2h, D2h, D3d , D4h, Oh

5 {2, 4}v : D2h, D4h

6 {3, 6}v : D2h

({2, 3}, 6)-spheres Th and D6h are GCk,k(2×Tetrahedron) and, for
k ≡ 1, 2 (mod 3), GCk,0(6× K2), respectively. Other spheres of
blue symmetry are GCk,l with l = 0, k from the first such sphere.

So, each of 7 blue-symmetric families is described by one natural
parameter k and contains O(

√
v) spheres with at most v vertices.
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({a, b}, k)-maps on Euclidean plane and 3-space

An ({a, b}, k)-E2 is a k-regular tiling of E2 by a- and b-gons.
({a, b}, k)-E2 have pa ≤ b

b−a and pb =∞. It follows from

Alexandrov, 1958: any metric on E2 of non-negative curvature
can be realized as a metric of convex surface on E3. In fact,
consider plane metric such that all faces became regular in it.
Its curvature is 0 on all interior points (faces, edges) and ≥ 0
on vertices. A convex surface is at most half-S2.
There are ∞ of ({a, b}, k)-E2 if 2≤pa≤ b

b−a and 1 if pa=0, 1.

The plane fullerenes (or nanocones) ({5, 6}, k)-E2 are
classified by Klein and Balaban, 2007: the number of
equivalence (isomorphism up to a finite induced subgraph)
classes is 2,2,2,1 for p5 = 2, 3, 4, 5, respectively.

An ({a, b}, k)-E3 is a 3-periodic k ′-regular face-to-face tiling
of the Euclidean 3-space E3 by ({a, b}, k)-spheres.
Next, we will mention such tilings by 4 special fullerenes,
which are important in Chemistry and Crystallography. Then
we consider extension of ({a, b}, k)-maps on manifolds.
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XIII. Beyond surfaces



Frank-Kasper ({a, b}, k)-spheres and tilings

A ({a, b}, k)-sphere is Frank-Kasper if no b-gons are adjacent.

All cases are: smallest ones in 8 families, 3 ({5, 6}, 3)-spheres
(24-, 26-, 28-vertex fullerenes), ({4, 6}, 3)-sphere Prism6,
3 ({3, 4}, 4)-spheres (APrism4, APrism2

3, Cuboctahedron),
({2, 4}, 4)-sphere doubled square and two ({2, 3}, 6)-spheres
(tripled triangle and doubled Tetrahedron).

20, Ih 24 D6d 26, D3h 28, Td



FK space fullerenes
A FK space fullerene is a 3-periodic 4-regular face-to-face tiling of
3-space E3 by four Frank-Kasper fullerenes {5, 6}v .
They appear in crystallography of alloys, clathrate hydrates,
zeolites and bubble structures. The most important, A15, is below.

Weaire-Phelan, 1994: best known solution of weak Kelvin problem



Other E3-tilings by ({a, b}, k)-spheres

An ({a, b}, k)-E3 is a 3-periodic k ′-regular face-to-face E3-tiling by
({a, b}, k)-spheres.
Deza-Shtogrin, 1999: first known non-FK space fullerene
({5, 6}, 3)-E3: 4-regular E3-tiling by {5, 6}20, {5, 6}24 and its
elongation ' {5, 6}36 (D6h) in proportion 7:2:1.



Fullerene manifolds

Given 3 ≤ a < b ≤ 6, {a, b}-manifold is a (d−1)-dimensional
d-valent compact connected manifold (locally homeomorphic
to Rd−1) whose 2-faces are only a- or b-gonal.

So, any i-face, 3 ≤ i ≤ d , is a polytopal i-{a, b}-manifold.

Most interesting case is (a, b) = (5, 6) (fullerene manifold),
when d = 2, 3, 4, 5 only since (Kalai, 1990) any 5-polytope
has a 3- or 4-gonal 2-face.

The smallest polyhex is 6-gon on T2. The “greatest”: {633},
the convex hull of vertices of {63}, realized on a horosphere.

Prominent 4-fullerene (600-vertex on S3) is 120-cell ({533}).
The ”greatest” polypent: {5333}, tiling of H4 by 120-cells.
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Projection of 120-cell in 3-space

{533}: 600 vertices, 120 dodecahedral facets, |Aut| = 14, 400



4- and 5-fullerenes

All known finite 4-fullerenes are ”mutations” of 120-cell by
interfering in one of ways to construct it: tubes of 120-cells,
coronas, inflation-decoration method, etc.
Some putative facets: Fn(G ) with (n,G )=(20,Ih), (24,D6h),
(26,D3), (28,Td), (30,D5h), (32,D3h), (36,D6h).

Space fullerenes ({5, 6}, 3)-E3: example of infinite
4-fullerenes.

All known 5-fullerenes come from {5333}’s by following ways.
With 6-gons also: glue two {5333}’s on some 120-cells and
delete their interiors. If it is done on only one 120-cell, it is
R× S3 (so, simply-connected).
Finite compact ones: the quotients of {5333} by its symmetry
group (partitioned into 120-cells) and gluings of them.
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Quotient d-fullerenes

Selberg, 1960, Borel, 1963: if a discrete group of motions of a
symmetric space has a compact fundamental domain, then it
has a torsion-free normal subgroup of finite index.

So, the quotient of a d-fullerene by such symmetry group (its
points are group orbits) is a finite d-fullerene.

Exp. 1: Polyhexes on T2, cylinder, Möbius surface and K2 are
the quotients of {63} by discontinuous fixed-point-free group
of isometries, generated by: 2 translations, a translation, a
glide reflection, translation and glide reflection, respectively.

Exp 2: Poincaré dodecahedral space: the quotient of 120-cell
by Ih ; so, its f -vector is (5, 10, 6, 1) = 1

120 f(120-cell).

Cf. 6-, 12-regular H3-tilings {5, 3, 4}, {5, 3, 5} by {5, 6}20 and
6-regular H3-tiling by (right-angled) {5, 6}24.
Seifert-Weber, 1933 and Löbell, 1931 spaces are quotients of
last 2 with f -vectors (1, 6, p5=6, 1), (24, 72, 48+8=p5+p6, 8).
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