Polycycles and

face-regular two-maps

Michel Deza

Ecole Normale Superieure, Paris, and JAIST, Ishikawa

Mathieu Dutour Sikiric

Rudjer Boskovic Institute, Zagreb

and Mikhail Shtogrin

Steklov Institute, Moscow

I. Strictly face-regular two-maps

Definition

A strictly face-regular two-map is

- a 3-connected 3-valent map (on sphere or torus), whose faces have size p or q ((p,q)-sphere or (p,q)-torus)
- **•** pR_i holds: any *p*-gonal face is adjacent to *i p*-gons
- qR_j holds: any q-gonal face is adjacent to j q-gons

(4,7)-sphere $4R_1$, $7R_4$

Euler formula

If e_{p-q} denote the number of edges separating p- and q-gon, then one has:

$$e_{p-q} = (p-i)f_p = (q-j)f_q$$

• Euler formula V - E + F = 2 - 2g with g being the genus, can be rewritten as

$$(6-p)f_p + (6-q)f_q = 6(2-2g)$$

This implies

$$e_{p-q}\left\{\frac{6-p}{p-i} + \frac{6-q}{q-j}\right\} = e_{p-q}\alpha(p,q,i,j) = 12(1-g)$$

A classification

- If $\alpha(p,q,i,j) > 0$, then g = 0, the map exists only on sphere and the number of vertices depends only on $\alpha(p,q,i,j)$.
- If $\alpha(p,q,i,j) = 0$, then g = 1, the map exists only on torus.
- If $\alpha(p,q,i,j) < 0$, then g > 1, the map exists only on surfaces of higher genus and the number of vertices is determined by the genus and $\alpha(p,q,i,j)$.

Detailed classification:

- On sphere: 55 sporadic examples + two infinite series: $Prism_q$ and $Barrel_q$
- On torus: 7 sporadic examples + 16 infinite cases.

Some sporadic spheres

(4,7)-sphere $4R_0$, $7R_4$

(5,7)-sphere $5R_2$, $7R_2$

(4, 8)-sphere $4R_1$, $8R_4$

(5, 10)-sphere $5R_3$, $10R_0$

Sporadic tori

(4,8)-torus $4R_0$, $8R_4$

(3, 12)-torus $3R_0$, $12R_6$

(4, 18)-torus $4R_2$, $18R_6$

Sporadic tori

(5, 11)-torus $5R_3$, $11R_1$

(5, 10)-torus $5R_3$, $10R_2$

(3, q)-tori $3R_0, qR_6 \ (7 \le q \le 12)$

- They are obtained by truncating a 3-valent tesselation of the torus by 6-gons on the vertices from a set S_q , such that every face is incident to exactly q 6 vertices in S_q .
- There is an infinity of possibilities, except for q = 12.

• (4,q)-tori $4R_2$, qR_6 ($4 \le \frac{q}{2} \le 9$) are obtained (from 6 above) by 4-triakon (dividing 3-gon into triple of 4-gons)

(4, 10)-tori $4R_1$, $10R_4$

Take the symbols

v

• The torus correspond to words of the form $(\alpha_0 \dots \alpha_n)^{\infty}$ with α_i being equal to u or v.

(5,7)-tori $5R_1$, $7R_3$

Take the symbols

v

• The torus correspond to words of the form $(\alpha_0 \dots \alpha_n)^{\infty}$ with α_i being equal to u or v.

(5,7)-tori $5R_2$, $7R_4$

If 5-gons form infinite lines, then one possibility:

Take the symbols

 \mathcal{U}

 ${\mathcal V}$

(5,7)-tori $5R_2$, $7R_4$

• Other tori correspond to words of the form $(\alpha_0 \dots \alpha_n)^{\infty}$ with α_i being equal to u or v.

(5, 8)-tori $5R_2$, $8R_2$

- 5-gons and 8-gons are organized in infinite lines.
- Only two configurations for 5-gons locally:

• Words of the form $(\alpha_0 \dots \alpha_n)^\infty$ with α_i being equal to uv or vu.

(4, 8)-tori $4R_1, 8R_5$

They are in one-to-one correspondence with perfect matchings PM of a 6-regular triangulation of the torus, such that every vertex is contained in a triangle, whose edge, opposite to this vertex, belongs to PM.

(4, 8)-tori $4R_1, 8R_5$

They are in one-to-one correspondence with perfect matchings PM of a 6-regular triangulation of the torus, such that every vertex is contained in a triangle, whose edge, opposite to this vertex, belongs to PM.

(4,7)-tori $4R_0$, $7R_5$

- Given a (4,8)-torus, which is $4R_1$ and $8R_5$, the removal of edges between two 4-gons produces a (4,7)-torus, which is $4R_0$ and $7R_5$.
- Any such (4,7)-torus can be obtained in this way from two (4,8)-tori T_1 and T_2 , which are $4R_1$ and $8R_5$.
- T_1 and T_2 are obtained from each other by the transformation

Our research program

- We investigated the cases of 3-regular spheres and tori being pR_i or qR_j .
- Such maps with q = 6 should be on sphere only.
 - All (3, 6)-spheres are $3R_0$.
 - There are infinities of (4, 6)-spheres $4R_i$ for i = 0, 1, 2; there are 9 (4, 6)-spheres $6R_j$.
 - There are infinities of (5, 6)-spheres $5R_i$ for i = 0, 1, 2; there are two spheres $5R_3$ and 26 spheres $6R_j$.

So, we will assume $q \ge 7$.

- For a (p,q)-polyhedron, which is qR_j , one has $j \leq 5$.
- For a 3-connected (p,q)-torus, which is qR_j , one has j ≤ 6.

Representations of (p, q)**-maps**

- Steinitz theorem: Any 3-connected planar graph is the skeleton of a polyhedron.
- Torus case:
 - A (p,q)-torus has a fundamental group isomorphic to \mathbb{Z}^2 , its universal cover is a periodic (p,q)-plane.
 - A periodic (p,q)-plane is the universal cover of an infinity of (p,q)-tori.
 - Take a (p,q)-torus T and its corresponding (p,q)-plane P. If all translation preserving P arise from the fundamental group of T, then T is called minimal.
 - Any (p,q)-plane is the universal cover of a unique minimal torus.

II. (p, 3)-polycycles

(p,3)-polycycles

A generalized (p, 3)-polycycle is a 2-connected plane graph with faces partitioned in two families F_1 and F_2 , so that:

- all elements of F₁ (proper faces) are (combinatorial) p-gons;
- In all elements of F_2 (holes, the exterior face is amongst them) are pairwisely disjoint;
- all vertices have valency 3 or 2 and any 2-valent vertex lies on a boundary of a hole.

(3,3) and (4,3)-polycycles

This classification is very useful for classifying (4, q)-maps.

A bridge is an edge going from a hole to a hole (possibly, the same).

Any generalized (p, 3)-polycycle is uniquely decomposable along its bridges.

The set of non-decomposable (5,3)-polycycles has been classified:

The infinite series of non-decomposable (5,3)-polycycles $E_n, n \ge 1$:

The only non-decomposable infinite (5,3)-polycycle are $E_{\mathbb{Z}^+}$ and $E_{\mathbb{Z}}$.

The infinite series of non-decomposable generalized (5,3)-polycycles $Barrel_q$, $q \ge 3$, $q \ne 5$:

III. pR_i -maps

$4R_0$ - and $4R_1$ -cases

- $4R_0$ -maps exist only for q = 7 or 8.
 - For q = 7: infinity of spheres and minimal tori.
 - For q = 8, the only case is strictly face-regular (4, 8)-torus $4R_0$, $8R_4$.
- $4R_1$ -maps exist only for $7 \le q \le 10$
 - For q = 7, 8 and 9: infinity of spheres and minimal tori.

• For q = 10, only tori exist and they are $10R_4$.

$4R_2$ -case

- $Prism_q$ is always $4R_2$; so, we consider different maps.
- 4-gons are organized in triples.
- One has $7 \le q \le 16$ or q = 18
 - For q = 14, 16, 18, they exist only on torus and are qR_6
 - Infinity of spheres is found for $7 \le q \le 13$ and q = 15.

$5R_1$ - and $5R_2$ -cases

- $5R_1$ -maps are only (5,7)-tori and they are $7R_3$.
- $5R_2$ -maps exist only for q = 7 and 8.
 - For q = 7, there is an infinity of spheres (Hajduk & Sotak) and tori.

• For q = 8, they exist only on torus and are also $8R_2$.

Possible only for $6 \le q \le 12$. The set of 5-gons is decomposed along the bridges into polycycles E_1 and E_2 :

- For q = 12, they exist only on torus and are $12R_0$
- For q = 11, they exist only on torus and are $11R_1$

• For q = 7, they exist only on sphere and are:

• For q = 9, it exist only on sphere and is:

- For q = 8, an infinity of (5, 8)-spheres is known (with 1640 + 1152i vertices). Two tori are known, one being $8R_4$, the other not.
- For q = 10, some spheres are known with 140, 740 and 7940 vertices. Infinitness of spheres and existence of tori, which are not $10R_2$, are undecided.

III. Frank-Kasper maps, i.e. qR_0 -maps

Frank-Kasper polyhedra

- A Frank-Kasper polyhedron is a (5, 6)-sphere which is $6R_0$. Exactly 4 cases exist.
- A space fullerene is a face-to-face tiling of the Euclidean space E³ by Frank-Kasper polyhedra. They appear in crystallography of alloys, bubble structures, clathrate hydrates and zeolites.

- We consider (5,q)-spheres and tori, which are qR_0
- The set of 5-gonal faces of Frank-Kasper maps is decomposable along the bridges into the following non-decomposable (5, 3)-polycycles:

The major skeleton Maj(G) of a Frank-Kasper map is a 3-valent map, whose vertex-set consists of polycycles E₁ and C₃.

A Frank-Kasper (5, 14)-sphere

The polycycle decomposition

Their names

The graph of polycycles.

Maj(G): eliminate C_1 , so as to get a 3-valent map

Results

- For a Frank-Kasper (5,q)-map, the gonality of faces of the 3-valent map Maj(G) is at most $\lfloor \frac{q}{2} \rfloor$.
- If q < 12, then there is no (5, q)-torus qR_0 and there is a finite number of (5, q)-spheres qR_0 . For q = 12:
 - There is a unique (5, 12)-torus $12R_0$
 - The (5, 12)-spheres $12R_0$ are classified.

• Conjecture: there is an infinity of (5, q)-spheres qR_0 for any q > 12.

IV. qR_1 -maps

Euler formula

If *P* is a (p,q)-map, which is qR_1 (*q*-gons in isolated pairs), then:

$$\begin{cases} (6-p)\mathbf{x_3} + \{2(p-q) + (6-p)(q-1)\}f_q = 4p & \text{on sphere}, \\ (6-p)\mathbf{x_3} + \{2(p-q) + (6-p)(q-1)\}f_q = 0 & \text{on torus}. \end{cases}$$

with x_3 being the number of vertices included in three p-gonal faces.

- For (4, q)-maps this yields finiteness on sphere and non-existence on torus.
- For (5,q)-maps this implies finiteness on sphere for $q \le 8$ and non-existence on torus

- There is no (4, q)-sphere qR_1 .
- (5,q)-map qR_1 , the non-decomposable (5,3)-polycycles, appearing in the decomposition are:

and the infinite serie E_{2n} (see cases n = 1, 2 below):

(5, 9)-maps $9R_1$

- In the case q = 9, Euler formula implies that the number of vertices, included in three 5-gons, is bounded (for sphere) or zero (for torus).
- All non-decomposable (5,3)-polycycles (except the single 5-gon) contain such vertices. This implies finiteness on sphere and non-existence on torus.
- While finiteness of (5,q)-spheres qR_1 is proved for q=8 and q=9, the actual work of enumeration is not finished.

(5, 10)-tori $10R_1$ and beyond

Using Euler formula and polycycle decomposition, one can see that the only appearing polycycles are:

- (5, 10)-torus, which is $10R_1$, corresponds, in a one-to-one fashion, to a perfect matching *PM* on a 6-regular triangulation of the torus, such that every vertex is contained in a triangle, whose edge, opposite to this vertex, belongs to *PM*.
- For any $q \ge 10$, there is a (5,q)-torus, which is qR_1 .
- Conjecture: there exists an infinity of (5, q)-spheres qR_1 if and only if $q \ge 10$.

V. qR_2 -maps

Euler formula

- The q-gons of a qR_2 -map are organized in rings, including triples, i.e. 3-rings.
- One has the Euler formula

$$\begin{cases} (4 - (4 - p)(4 - q))f_q + (6 - p)(x_0 + x_3) = 4p & \text{on sphere}, \\ (4 - (4 - p)(4 - q))f_q + (6 - p)(x_0 + x_3) = 0 & \text{on torus}. \end{cases}$$

- x₀ is the number of vertices incident to 3 p-gonal faces and
- x_3 the number of vertices incident to 3 q-gonal faces.
- It implies the finiteness for (4,q), (5,6), (5,7).

All (4, q)-maps qR_2

• two possibilities (for q = 8, 6):

and the infinite series

(5,q)-maps qR_2

• For q = 7, 26 spheres and no tori. Two examples:

- For $q \ge 8$, there is an infinity of (5, q)-spheres and minimal (5, q)-tori, which are qR_2 .
- a (5,8)-torus is $8R_2$ if and only if it is $5R_2$

III. qR_3 -maps

Classification for (4, q)-case

The (4,3)-polycycles, appearing in the decomposition, are:

- Consider the graph, whose vertices are q-gonal faces of a (4,q)-sphere qR_3 (same adjacency).
 - It is a 3-valent map
 - Its faces are 2-, 3- or 4-gons.
 - It has at most 8 vertices.

(two infinite series)

(a family $K_{b,q}$ with $1 \le b \le q-5$)

(5,q)-maps qR_3

- A (5,7)-torus is $7R_3$ if and only if it is $5R_1$.
- A (5,7)-sphere, which is $7R_3$, has $x_0 + x_3 = 20$ with x_i being the number of vertices contained in i 5-gonal faces.
- ▶ For all $q \ge 7$, (5,q)-tori, qR_3 are known:

• Conj. For any $q \ge 7$ there is an infinity of (5, q)-spheres.

III. qR_4 -maps

Classification of (4, 8)-maps $8R_4$

• For (4, 8)-maps, which are $8R_4$, one has

$$x_0 + x_3 = 8(1 - g)$$

 $e_{4-4} = 12(1 - g)$

with g being the genus (0 for sphere and 1 for torus) and x_i the number of vertices contained in i 4-gonal faces.

• There exists a unique (4, 8)-torus $8R_4$:

We use for the complicated case of (4,8)-sphere 8R₄ an exhaustive computer enumeration method.

Classification of (4, 8)-maps $8R_4$

Two examples amongst 78 sporadic spheres.

Classification of (4, 8)-maps $8R_4$

One infinite series amongst 12 infinite series.

III. qR_5 -maps

(4,q)-case

- (4,q)-tori, which are qR_5 , are known for any $q \ge 7$.
- For q = 7, they are $4R_0$.
- (4,7)-spheres $7R_5$ satisfy to $e_{4-4} = 12$. Is there an infinity of such spheres?

(5,q)-case

• The smallest (5, q)-spheres qR_5 for q = 7, 8, 9 are:

