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|. Strictly

face-regular two-maps



Definition

fA strictly face-regular two-map is T

# a 3-connected 3-valent map (on sphere or torus), whose
faces have size p or ¢ ((p, ¢)-sphere or (p, q)-torus)

# pR; holds: any p-gonal face Is adjacent to i p-gons
® ¢R; holds: any ¢g-gonal face is adjacent to j ¢g-gons

L (5,7)-sphere 5Rs, TRy (4,7)-sphere 4Ry, TRy J
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Euler formula

B | -

» If e,_, denote the number of edges separating p- and
g-gon, then one has:

ep—q =P —1)fp="(a1—J)fq

# EulerformulaV — E+ F =2 — 2g with g being the
genus, can be rewritten as

(6 —p)fp+(6—q)fg =06(2—2g)
# This implies

6—p 6—
T — € OéPanlaj _121_9
PO i) = 120 - g

- -

—p. 4/

ep—gl——



A classification

f.o If a(p,q,1,7) > 0, then g = 0, the map exists only on T
sphere and the number of vertices depends only on

a(p,q,1,7)-
® Ifa(p,qg,i,7)=0,then g =1, the map exists only on
torus.

® Ifa(p,q,i,7) <0,then g > 1, the map exists only on
surfaces of higher genus and the number of vertices is
determined by the genus and a(p, q,1%, ).

Detailed classification:

#® On sphere: 55 sporadic examples + two infinite series:
Prism, and Barrel,

# Ontorus: 7 sporadic examples + 16 infinite cases.

o -
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Some sporadic spheres

(4,7)-sphere 4Ry, TRy (4,8)-sphere 4R, 8R4

L (5, 7)-sphere 5Rs, TR (5,10)-sphere 5R3, 10Rg J



Sporadic tori

(3,12)-torus 3Ry, 12Rg (4, 8)-torus 4Ry, 8R4

L N
(4,18)-torus 4Ry, 18Ry -
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Sporadic torl

(5,8)-torus 5Rs, 8R4

(5,11)-torus 5R3, 11R;

ST ST
sEecetasetes

O H

(5, 12)-torus 5R3, 12 Ry




(3, q)-tOI’i 3Ry, gRg 7<q<12)

f.o They are obtained by truncating a 3-valent tesselation ofT
the torus by 6-gons on the vertices from a set S, such
that every face Is incident to exactly ¢ — 6 vertices in ;.

# There Is an infinity of possibilities, except for ¢ = 12.

(3,7)-torus 3Ry,  (3,8)-torus 3Ry,  (3,9)-torus 3Ry,
7R6 8R6 9R6
® (4,q)-tori 4Ry, qRe (4 < 4 < 9) are obtained (from 6
L above) by 4-triakon (dividing 3-gon into triple of 4-gons) J
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(4,10)-tori 4Ry, 10R,
-

# Take the symbols

e RN

# The torus correspond to words of the form (g . ..ap)>®
with «; being equal to « or v.

()™ (uv)>



-

(5 7)-tori bR1, TR5

# Take the symbols

&MW

® The torus correspond to words of the form (g ...
with «; being equal to « or v.

(u)> (uv)™



(5, 7)-tori hRo, TRy

- .

# If 5-gons form infinite lines, then one possibility:

o Take the symbols



(5, 7)-tori hRo, TR,

- .

# Other tori correspond to words of the form (aqg ... ay, )™
with «; being equal to « or v.



(5, 8)-tori HRo, 8RR

- .

# 5-gons and 8-gons are organized In infinite lines.
# Only two configurations for 5-gons locally:

D o

# Words of the form («y . .. a,)> with a; being equal to uw
or vu.

L x / \
A

|
TN

L (uv)™>° (uvvu)™> J




(4, 8)-tori 4R+, 8R;
- o

#® They are in one-to-one correspondence with perfect
matchings PM of a 6-regular triangulation of the torus,
such that every vertex is contained in a triangle, whose
edge, opposite to this vertex, belongs to P\



-

(4, 8)-tori 4R+, 8R;

#® They are in one-to-one correspondence with perfect
matchings PM of a 6-regular triangulation of the torus,
such that every vertex is contained in a triangle, whose
edge, opposite to this vertex, belongs to P\

-



(4,7)-tori 4Ry, 7R

f.o Given a (4, 8)-torus, which is 4R, and 8 R, the removal T
of edges between two 4-gons produces a (4, 7)-torus,
which is 4Ry and 7Rs.

# Any such (4, 7)-torus can be obtained in this way from
two (4, 8)-tori 77 and T», which are 4R, and 8Rs.

# 77 and T, are obtained from each other by the
transformation
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Our research program

We investigated the cases of 3-regular spheres and tori
being pR; or ¢R;.

Such maps with ¢ = 6 should be on sphere only.

s All (3,6)-spheres are 3Rj.

s There are infinities of (4, 6)-spheres 4R; for : = 0, 1,
2; there are 9 (4, 6)-spheres 6R;.

s There are infinities of (5,6)-spheres 5R; for : = 0, 1,
2; there are two spheres 5R3 and 26 spheres 6R;.

So, we will assume ¢ > 7.
For a (p, ¢)-polyhedron, which is ¢R;, one has j < 5.

For a 3-connected (p, q)-torus, which is ¢R;, one has
7 < 6.

=
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Representations of(p, ¢)-maps
B o

# Steinitz theorem: Any 3-connected planar graph is the
skeleton of a polyhedron.

#» Jorus case:
s A (p,q)-torus has a fundamental group isomorphic to
7.2, its universal cover is a periodic (p, ¢)-plane.
s A periodic (p, q)-plane is the universal cover of an
infinity of (p, ¢)-tori.
» Take a (p, q)-torus T and its corresponding
(p, q)-plane P. If all translation preserving P arise

from the fundamental group of 7', then 7' is called
minimal.

s Any (p, q)-plane is the universal cover of a unique

L minimal torus. J
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Il. (p, 3)-polycycles



(p, 3)-polycycles
-

fA generalized (p, 3)-polycycle is a 2-connected plane graph
with faces partitioned in two families F; and F5, so that:

# all elements of I (proper faces) are (combinatorial)
p-gons,

# all elements of £5 (holes, the exterior face iIs amongst
them) are pairwisely disjoint;

# all vertices have valency 3 or 2 and any 2-valent vertex
lies on a boundary of a hole.

— p. 18/



(3,3) and (4, 3)-polycycles
=

(i) Any (3, 3)-polycycle is one of the following 3 cases:

< <> A

(i) Any (4, 3)-polycycle belongs to the following 3 cases:

SeRee

or belong to the following infinite family of (4, 3)-polycycles:

O 4D

This classification is very useful for classifying (4, ¢)-maps.

o -
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(5, 3)-polycycle decomposition

-

A bridge is an edge going from a hole to a hole (possibly,
the same).

=



(5, 3)-polycycle decomposition

-

Any generalized (p, 3)-polycycle is uniquely decomposable
along its bridges.

SeRisSelss
=S s
SeRsocss

-



(5, 3)-polycycle decomposition

-

The set of non-decomposable (5, 3)-polycycles has been

@
BB S

-




(5, 3)-polycycle decomposition




(5, 3)-polycycle decomposition

-

The infinite series of non-decomposable (5, 3)-polycycles
E,,n > 1.

=

The only non-decomposable infinite (5, 3)-polycycle are E;+

Land Ey. J




(5, 3)-polycycle decomposition

-

The infinite series of non-decomposable generalized
(5, 3)-polycycles Barrely, ¢ > 3, ¢ # 5:

=




lHl. pR;-maps



4R,- and 4 R{-cases

f.o 4Ry-maps exist only for ¢ = 7 or 8. T
s For g = 7: infinity of spheres and minimal tori.
s For ¢ = 8, the only case is strictly face-regular
(4, 8)-torus 4Ry, 8Ry.
® 4Ri-maps exist only for 7 < ¢ < 10

s For g =7, 8 and 9: infinity of spheres and minimal
tori.

s For ¢ = 10, only tori exist and they are 10Rj4.

o -
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4 Ro-case

f.o Prism, Is always 4R»; so, we consider different maps. T
# 4-gons are organized in triples.

® Onehas7<¢g<160rqg=18

s For g = 14, 16, 18, they exist only on torus and are
qRe
s Infinity of spheres is found for 7 < ¢ < 13 and ¢ = 15.

—p. 23/



HhR- and b R>-cases

- .

® 5Ri;-maps are only (5, 7)-tori and they are 7Rs.

® HRy-maps exist only for ¢ = 7 and 8.

s For ¢ =7, there is an infinity of spheres (Hajduk &
Sotak) and tori.

s For g = 8§, they exist only on torus and are also 8.

o -
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HhRs-case

Possible only for 6 < ¢ < 12. The set of 5-gons is T
decomposed along the bridges into polycycles E; and

B &

For ¢ = 12, they exist only on torus and are 12R
For ¢ = 11, they exist only on torus and are 11R;

— p. 25/



HhRs-case

- .

#® For g =7, they exist only on sphere and are:




HhRs-case

f #® For g =29, it exist only on sphere and is:




HhRs-case

f # For ¢ = 8, an infinity of (5, 8)-spheres is known (with T
1640 4+ 11527 vertices). Two tori are known, one being
8R4, the other not.

#® For g = 10, some spheres are known with 140, 740 and
7940 vertices. Infinithess of spheres and existence of
tori, which are not 10RR5, are undecided.

— p. 25/



Ill. Frank-Kasper maps,

l.e. ¢Rp-maps



Frank-Kasper polyhedra
B o

# A Frank-Kasper polyhedron is a (5, 6)-sphere which is
6Ry. Exactly 4 cases exist.

# A space fullerene is a face-to-face tiling of the

Euclidean space E?® by Frank-Kasper polyhedra. They

appear in crystallography of alloys, bubble structures,
clathrate hydrates and zeolites.




Polycycle decomposition
f # We consider (5, q)-spheres and tori, which are ¢Ry T

#® The set of 5-gonal faces of Frank-Kasper maps is

decomposable along the bridges into the following
non-decomposable (5, 3)-polycycles:

®@@

# The major skeleton Ma](G) of a Frank-Kasper map is a
3-valent map, whose vertex-set consists of polycycles

L F1 and Cs. J

— p. 28/



Polycycle decomposition

A Frank-Kasper (5, 14)-sphere



Polycycle decomposition

The polycycle decomposition



Polycycle decomposition




Polycycle decomposition

The graph of polycycles.



Polycycle decomposition

Maj(G): eliminate Cy, so as to get a 3-valent

o map



Results

f.’ For a Frank-Kasper (5, g)-map, the gonality of faces of T
the 3-valent map Maj(G) is at most |2 ].

® If ¢ < 12, then there is no (5, q)-torus ¢Ry and there is a
finite number of (5, ¢)-spheres ¢Ry.
For ¢ = 12:
s There is a unigque
(5, 12)-torus 12Ry

s The (5,12)-spheres
12R, are classified.

o there is an infinity of (5, ¢)-spheres qR, for

L any ¢ > 12. J

—p. 29/



IV. g R{-maps



Euler formula

fIf P is a (p, q)-map, which is ¢ (g-gons in isolated pairs), T
then:

(6 —p)zs+{2(p—q)+ (6—p)(¢—1)}f, =4p on sphere,
(6 —p)rs+1{2(p—q) +(6—p)(g—1)}f; =0 ontorus.

\

/

/\

with =3 being the number of vertices included in three
p-gonal faces.

# For (4, q)-maps this yields finiteness on sphere and
non-existence on torus.

# For (5, g)-maps this implies finiteness on sphere for
g < 8 and non-existence on torus

o -
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Polycycle decomposition
f.o There is no (4, q)-sphere ¢R;. T

® (5,9)-map qR;, the non-decomposable (5, 3)-polycycles,
appearing in the decomposition are:

O D &
& D

and the infinite serie E»,, (see cases n = 1,2 below):

Yy T

—p. 32/



(5,9)-maps9IRk;

- .

# Inthe case ¢ = 9, Euler formula implies that the number
of vertices, included in three 5-gons, is bounded (for
sphere) or zero (for torus).

# All non-decomposable (5, 3)-polycycles (except the
single 5-gon) contain such vertices. This implies
finiteness on sphere and non-existence on torus.

# While finiteness of (5, g)-spheres ¢qR; is proved for ¢ = 8
and ¢ = 9, the actual work of enumeration is not
finished.

— p. 33/



(5,10)-tori 10R; and beyond
-

Using Euler formula and polycycle decomposition, one
can see that the only appearing polycycles are:

SRe

(5, 10)-torus, which is 10R;, corresponds, in a
one-to-one fashion, to a perfect matching P on a
6-regular triangulation of the torus, such that every
vertex is contained in a triangle, whose edge, opposite
to this vertex, belongs to PJ/.

For any ¢ > 10, there is a (5, ¢)-torus, which is ¢qR;.

there exists an infinity of (5, g)-spheres ¢qR;
If and only if ¢ > 10. J

— p. 34/



V. g Ro-maps



Euler formula

- .

# The ¢-gons of a ¢Ro-map are organized in rings,
Including triples, i.e. 3-rings.

® One has the Euler formula

(4— (4 —p)(4— ) fy + (6 — p)(wo + 23) =4p on sphere,
4—-—(4—-p)4—-¢q))fq+ (6 —p)(zo+23) =0 ontorus.

s 10 IS the number of vertices incident to 3 p-gonal
faces and

s 13 the number of vertices incident to 3 g-gonal faces.
# [t implies the finiteness for (4, q), (5,6), (5,7).

o -
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All (4, g)-mapsqRs
-

#® two possibilities (for ¢ = 8, 6):

# and the infinite series

e




(5, q)-mapsq Ry

| .

#® For g =7, 26 spheres and no tori. Two examples:

# For q > 8, there is an infinity of (5, ¢)-spheres and
minimal (5, g)-tori, which are qR,.

# a (5,8)-torus is 8Ry if and only if it IS 5 R

L -
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lll. g R3-maps



Classification for (4, q)-case

- .

# The (4, 3)-polycycles, appearing in the decomposition,

SRS
(DAl

# Consider the graph, whose vertices are g-gonal faces of
a (4, q)-sphere qR3 (same adjacency).

s Itis a 3-valent map
s Its faces are 2-, 3- or 4-gons.
L s It has at most 8 vertices. J




- .

=

o yields @
) <> <> yields @ (one infinite series)

o -




\ and

(two infinite series)



yields

(a family K; , with 1 <b < ¢ — 5)



(9, q)-mapsqR;
f.p A (5,7)-torus is 7TRs if and only if it Is 5R;. T

# A (5,7)-sphere, which is 7R3, has zo + 3 = 20 with z;
being the number of vertices contained in i 5-gonal
faces.

o Forallqg>7, (5, q)-tori, gR3 are known:




Ill. ¢ R4-maps



s

Classification of (4, 8)-maps8 R,

For (4, 8)-maps, which are 8R4, one has T

ro+ 23 = 8(1—g)
sy = 12(1— g)

with ¢ being the genus (0 for sphere and 1 for torus) and
x; the number of vertices contained in ¢ 4-gonal faces.

There exists a unique (4, 8)-torus 8R,:

We use for the complicated case of (4, 8)-sphere 8R4 an
exhaustive computer enumeration method. J

— p. 44/



Classification of (4, 8)-maps8 R,

- .

Two examples amongst 78 sporadic spheres.



Classification of (4, 8)-maps8 R,

One Iinfinite series amongst 12 infinite series.

o -




ll. ¢ R5-maps



(4, q)-case
f.p (4, q)-tori, which are qRs5, are known for any ¢ > 7.
® For g =7, they are 4R,.

® (4,7)-spheres 7R5 satisfy to e4_4 = 12. Is there an
Infinity of such spheres?




(5, g)-case

-

#® The smallest (5, q)-spheres qR5 for ¢ =7, 8, 9 are:

e ~

"“ 'Q‘ \‘

'.~

—p. 47!
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