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I. Strictly

face-regular two-maps
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Definition
A strictly face-regular two-map is

a 3-connected 3-valent map (on sphere or torus), whose
faces have size p or q ((p, q)-sphere or (p, q)-torus)

pRi holds: any p-gonal face is adjacent to i p-gons

qRj holds: any q-gonal face is adjacent to j q-gons

(5, 7)-sphere 5R3, 7R1 (4, 7)-sphere 4R1, 7R4
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Euler formula

If ep−q denote the number of edges separating p- and
q-gon, then one has:

ep−q = (p − i)fp = (q − j)fq

Euler formula V − E + F = 2 − 2g with g being the
genus, can be rewritten as

(6 − p)fp + (6 − q)fq = 6(2 − 2g)

This implies

ep−q{
6 − p

p − i
+

6 − q

q − j
} = ep−qα(p, q, i, j) = 12(1 − g)
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A classification
If α(p, q, i, j) > 0, then g = 0, the map exists only on
sphere and the number of vertices depends only on
α(p, q, i, j).

If α(p, q, i, j) = 0, then g = 1, the map exists only on
torus.

If α(p, q, i, j) < 0, then g > 1, the map exists only on
surfaces of higher genus and the number of vertices is
determined by the genus and α(p, q, i, j).

Detailed classification:

On sphere: 55 sporadic examples + two infinite series:
Prismq and Barrelq

On torus: 7 sporadic examples + 16 infinite cases.
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Some sporadic spheres

(4, 7)-sphere 4R0, 7R4
(4, 8)-sphere 4R1, 8R4

(5, 7)-sphere 5R2, 7R2 (5, 10)-sphere 5R3, 10R0
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Sporadic tori

(3, 12)-torus 3R0, 12R6 (4, 8)-torus 4R0, 8R4

(4, 18)-torus 4R2, 18R6
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Sporadic tori

(5, 8)-torus 5R3, 8R4 (5, 10)-torus 5R3, 10R2

(5, 11)-torus 5R3, 11R1 (5, 12)-torus 5R3, 12R0
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(3, q)-tori 3R0, qR6 (7 ≤ q ≤ 12)

They are obtained by truncating a 3-valent tesselation of
the torus by 6-gons on the vertices from a set Sq, such
that every face is incident to exactly q − 6 vertices in Sq.

There is an infinity of possibilities, except for q = 12.

(3, 7)-torus 3R0,
7R6

(3, 8)-torus 3R0,
8R6

(3, 9)-torus 3R0,
9R6

(4, q)-tori 4R2, qR6 (4 ≤ q
2
≤ 9) are obtained (from 6

above) by 4-triakon (dividing 3-gon into triple of 4-gons)
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(4, 10)-tori 4R1, 10R4

Take the symbols

u v

The torus correspond to words of the form (α0 . . . αn)∞

with αi being equal to u or v.

(u)∞ (uv)∞
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(5, 7)-tori 5R1, 7R3

Take the symbols

u v

The torus correspond to words of the form (α0 . . . αn)∞

with αi being equal to u or v.

(u)∞ (uv)∞
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(5, 7)-tori 5R2, 7R4

If 5-gons form infinite lines, then one possibility:

Take the symbols

u v
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(5, 7)-tori 5R2, 7R4

Other tori correspond to words of the form (α0 . . . αn)∞

with αi being equal to u or v.

(u)∞ (uv)∞
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(5, 8)-tori 5R2, 8R2

5-gons and 8-gons are organized in infinite lines.

Only two configurations for 5-gons locally:

u v

Words of the form (α0 . . . αn)∞ with αi being equal to uv

or vu.

(uv)∞ (uvvu)∞
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(4, 8)-tori 4R1, 8R5

They are in one-to-one correspondence with perfect
matchings PM of a 6-regular triangulation of the torus,
such that every vertex is contained in a triangle, whose
edge, opposite to this vertex, belongs to PM .
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(4, 8)-tori 4R1, 8R5
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edge, opposite to this vertex, belongs to PM .
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(4, 7)-tori 4R0, 7R5

Given a (4, 8)-torus, which is 4R1 and 8R5, the removal
of edges between two 4-gons produces a (4, 7)-torus,
which is 4R0 and 7R5.

Any such (4, 7)-torus can be obtained in this way from
two (4, 8)-tori T1 and T2, which are 4R1 and 8R5.

T1 and T2 are obtained from each other by the
transformation
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Our research program

We investigated the cases of 3-regular spheres and tori
being pRi or qRj .

Such maps with q = 6 should be on sphere only.
All (3, 6)-spheres are 3R0.
There are infinities of (4, 6)-spheres 4Ri for i = 0, 1,
2; there are 9 (4, 6)-spheres 6Rj .
There are infinities of (5, 6)-spheres 5Ri for i = 0, 1,
2; there are two spheres 5R3 and 26 spheres 6Rj .

So, we will assume q ≥ 7.

For a (p, q)-polyhedron, which is qRj, one has j ≤ 5.

For a 3-connected (p, q)-torus, which is qRj , one has
j ≤ 6.
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Representations of(p, q)-maps

Steinitz theorem: Any 3-connected planar graph is the
skeleton of a polyhedron.

Torus case:
A (p, q)-torus has a fundamental group isomorphic to
Z

2, its universal cover is a periodic (p, q)-plane.
A periodic (p, q)-plane is the universal cover of an
infinity of (p, q)-tori.
Take a (p, q)-torus T and its corresponding
(p, q)-plane P . If all translation preserving P arise
from the fundamental group of T , then T is called
minimal.
Any (p, q)-plane is the universal cover of a unique
minimal torus.
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II. (p, 3)-polycycles

– p. 17/47



(p, 3)-polycycles

A generalized (p, 3)-polycycle is a 2-connected plane graph
with faces partitioned in two families F1 and F2, so that:

all elements of F1 (proper faces) are (combinatorial)
p-gons;

all elements of F2 (holes, the exterior face is amongst
them) are pairwisely disjoint;

all vertices have valency 3 or 2 and any 2-valent vertex
lies on a boundary of a hole.
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(3, 3) and (4, 3)-polycycles

(i) Any (3, 3)-polycycle is one of the following 3 cases:

(ii) Any (4, 3)-polycycle belongs to the following 3 cases:

or belong to the following infinite family of (4, 3)-polycycles:

This classification is very useful for classifying (4, q)-maps.
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(5, 3)-polycycle decomposition

A bridge is an edge going from a hole to a hole (possibly,
the same).
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(5, 3)-polycycle decomposition

Any generalized (p, 3)-polycycle is uniquely decomposable
along its bridges.
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(5, 3)-polycycle decomposition

The set of non-decomposable (5, 3)-polycycles has been
classified:
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(5, 3)-polycycle decomposition
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(5, 3)-polycycle decomposition

The infinite series of non-decomposable (5, 3)-polycycles
En, n ≥ 1:

The only non-decomposable infinite (5, 3)-polycycle are EZ+

and EZ.
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(5, 3)-polycycle decomposition

The infinite series of non-decomposable generalized
(5, 3)-polycycles Barrelq, q ≥ 3, q 6= 5:
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III. pRi-maps
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4R0- and 4R1-cases
4R0-maps exist only for q = 7 or 8.

For q = 7: infinity of spheres and minimal tori.
For q = 8, the only case is strictly face-regular
(4, 8)-torus 4R0, 8R4.

4R1-maps exist only for 7 ≤ q ≤ 10

For q = 7, 8 and 9: infinity of spheres and minimal
tori.

For q = 10, only tori exist and they are 10R4.
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4R2-case

Prismq is always 4R2; so, we consider different maps.

4-gons are organized in triples.

One has 7 ≤ q ≤ 16 or q = 18

For q = 14, 16, 18, they exist only on torus and are
qR6

Infinity of spheres is found for 7 ≤ q ≤ 13 and q = 15.
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5R1- and 5R2-cases

5R1-maps are only (5, 7)-tori and they are 7R3.

5R2-maps exist only for q = 7 and 8.
For q = 7, there is an infinity of spheres (Hajduk &
Sotak) and tori.

For q = 8, they exist only on torus and are also 8R2.
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5R3-case
Possible only for 6 ≤ q ≤ 12. The set of 5-gons is
decomposed along the bridges into polycycles E1 and
E2:

For q = 12, they exist only on torus and are 12R0

For q = 11, they exist only on torus and are 11R1
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5R3-case

For q = 7, they exist only on sphere and are:
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5R3-case

For q = 9, it exist only on sphere and is:
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5R3-case

For q = 8, an infinity of (5, 8)-spheres is known (with
1640 + 1152i vertices). Two tori are known, one being
8R4, the other not.

For q = 10, some spheres are known with 140, 740 and
7940 vertices. Infinitness of spheres and existence of
tori, which are not 10R2, are undecided.
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III. Frank-Kasper maps,

i.e. qR0-maps
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Frank-Kasper polyhedra

A Frank-Kasper polyhedron is a (5, 6)-sphere which is
6R0. Exactly 4 cases exist.

A space fullerene is a face-to-face tiling of the
Euclidean space E3 by Frank-Kasper polyhedra. They
appear in crystallography of alloys, bubble structures,
clathrate hydrates and zeolites.
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Polycycle decomposition

We consider (5, q)-spheres and tori, which are qR0

The set of 5-gonal faces of Frank-Kasper maps is
decomposable along the bridges into the following
non-decomposable (5, 3)-polycycles:

E1

C3

C1

The major skeleton Maj(G) of a Frank-Kasper map is a
3-valent map, whose vertex-set consists of polycycles
E1 and C3.
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Polycycle decomposition

A Frank-Kasper (5, 14)-sphere
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Polycycle decomposition

The polycycle decomposition
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Polycycle decomposition

E 1

C 1

C 3E 1

C 3

C 1

C 1

E 1

E 1

E 1

E 1

Their names
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Polycycle decomposition

E 1

C 3E 1

E 1

E 1

E 1

E 1

C 1

C 1

C 1

The graph of polycycles.
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Polycycle decomposition

E 1

C 3E 1

E 1

E 1

E 1

E 1

Maj(G): eliminate C1, so as to get a 3-valent
map
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Results

For a Frank-Kasper (5, q)-map, the gonality of faces of
the 3-valent map Maj(G) is at most ⌊ q

2
⌋.

If q < 12, then there is no (5, q)-torus qR0 and there is a
finite number of (5, q)-spheres qR0.
For q = 12:

There is a unique
(5, 12)-torus 12R0

The (5, 12)-spheres
12R0 are classified.

Conjecture: there is an infinity of (5, q)-spheres qR0 for
any q > 12.
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IV. qR1-maps
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Euler formula

If P is a (p, q)-map, which is qR1 (q-gons in isolated pairs),
then:
{

(6 − p)x3 + {2(p − q) + (6 − p)(q − 1)}fq = 4p on sphere,

(6 − p)x3 + {2(p − q) + (6 − p)(q − 1)}fq = 0 on torus.

with x3 being the number of vertices included in three
p-gonal faces.

For (4, q)-maps this yields finiteness on sphere and
non-existence on torus.

For (5, q)-maps this implies finiteness on sphere for
q ≤ 8 and non-existence on torus
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Polycycle decomposition
There is no (4, q)-sphere qR1.

(5, q)-map qR1, the non-decomposable (5, 3)-polycycles,
appearing in the decomposition are:

and the infinite serie E2n (see cases n = 1, 2 below):
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(5, 9)-maps9R1

In the case q = 9, Euler formula implies that the number
of vertices, included in three 5-gons, is bounded (for
sphere) or zero (for torus).

All non-decomposable (5, 3)-polycycles (except the
single 5-gon) contain such vertices. This implies
finiteness on sphere and non-existence on torus.

While finiteness of (5, q)-spheres qR1 is proved for q = 8
and q = 9, the actual work of enumeration is not
finished.
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(5, 10)-tori 10R1 and beyond

Using Euler formula and polycycle decomposition, one
can see that the only appearing polycycles are:

(5, 10)-torus, which is 10R1, corresponds, in a
one-to-one fashion, to a perfect matching PM on a
6-regular triangulation of the torus, such that every
vertex is contained in a triangle, whose edge, opposite
to this vertex, belongs to PM .

For any q ≥ 10, there is a (5, q)-torus, which is qR1.

Conjecture: there exists an infinity of (5, q)-spheres qR1

if and only if q ≥ 10.
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V. qR2-maps
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Euler formula

The q-gons of a qR2-map are organized in rings,
including triples, i.e. 3-rings.

One has the Euler formula
{

(4 − (4 − p)(4 − q))fq + (6 − p)(x0 + x3) = 4p on sphere,

(4 − (4 − p)(4 − q))fq + (6 − p)(x0 + x3) = 0 on torus.

x0 is the number of vertices incident to 3 p-gonal
faces and
x3 the number of vertices incident to 3 q-gonal faces.

It implies the finiteness for (4, q), (5, 6), (5, 7).
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All (4, q)-mapsqR2

two possibilities (for q = 8, 6):

and the infinite series
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(5, q)-mapsqR2

For q = 7, 26 spheres and no tori. Two examples:

For q ≥ 8, there is an infinity of (5, q)-spheres and
minimal (5, q)-tori, which are qR2.

a (5, 8)-torus is 8R2 if and only if it is 5R2
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III. qR3-maps
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Classification for (4, q)-case

The (4, 3)-polycycles, appearing in the decomposition,
are:

Consider the graph, whose vertices are q-gonal faces of
a (4, q)-sphere qR3 (same adjacency).

It is a 3-valent map
Its faces are 2-, 3- or 4-gons.
It has at most 8 vertices.
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yields

yields

yields (one infinite series)
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yields

and

(two infinite series)
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yields

(a family Kb,q with 1 ≤ b ≤ q − 5)
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(5, q)-mapsqR3

A (5, 7)-torus is 7R3 if and only if it is 5R1.

A (5, 7)-sphere, which is 7R3, has x0 + x3 = 20 with xi

being the number of vertices contained in i 5-gonal
faces.

For all q ≥ 7, (5, q)-tori, qR3 are known:

Conj. For any q ≥ 7 there is an infinity of (5, q)-spheres.
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III. qR4-maps
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Classification of(4, 8)-maps8R4

For (4, 8)-maps, which are 8R4, one has
{

x0 + x3 = 8(1 − g)

e4−4 = 12(1 − g)

with g being the genus (0 for sphere and 1 for torus) and
xi the number of vertices contained in i 4-gonal faces.

There exists a unique (4, 8)-torus 8R4:

We use for the complicated case of (4, 8)-sphere 8R4 an
exhaustive computer enumeration method.
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Classification of(4, 8)-maps8R4

Two examples amongst 78 sporadic spheres.
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Classification of(4, 8)-maps8R4

One infinite series amongst 12 infinite series.
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III. qR5-maps
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(4, q)-case

(4, q)-tori, which are qR5, are known for any q ≥ 7.

For q = 7, they are 4R0.

(4, 7)-spheres 7R5 satisfy to e4−4 = 12. Is there an
infinity of such spheres?
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(5, q)-case

The smallest (5, q)-spheres qR5 for q = 7, 8, 9 are:
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