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Definition of fullerene

A fullerene Fv is a simple polyhedron whose v vertices
are arranged in 12 pentagons and (v

2
− 10) hexagons.

Fv exist for all even v ≥ 20 except v = 22.

1, 1, 1, 2, 5 . . . , 1812, . . . 214127713, . . . isomers Fv, for v =
20, 24, 26, 28, 30 . . . , 60, . . . , 200, . . . .

Thurston,1998, implies: number of Fv grows as v9.

F60(Ih), F80(Ih) are the only icosahedral
(i.e., with highest possible symmetry Ih or I)
fullerenes with v ≤ 80 vertices.
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The range of fullerenes

Dodecahedron F20(Ih):
the smallest fullerene Graphite lattice (63) as F∞:

the “largest fullerene"
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Small fullerenes

24, D6d 26, D3h 28, D2 28, Td

30, D5h 30, C2v 30, D2v
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Icosahedral fullerenes
v = 20T , where T = a2 + ab + b2 (triangulation number)
with 0 ≤ b ≤ a; all come by construction GCa,b.

Ih (extended icosahedral group): for a = b 6= 0 or b = 0;
I (proper icosahedral group): for 0 < b < a.

All except F20(Ih) are IPR (isolated pentagons).

F60(Ih)=(1, 1)-dodecahedron
Truncated Icosahedron

F80(Ih)=(2, 0)-dodecahedron
Chamfered Dodecahedron
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Parametrizing fullerenes

Since hexagons are of zero curvature, it suffices to give
relative positions of faces of non-zero curvature.

Goldberg, 1937: all Fv of symmetry (I, Ih)
are given by Goldberg-Coxeter construction GCa,b.

Fowler and al., 1988: all Fv of symmetry D5, D6 or T are
described in terms of 4 integer parameters.

Graver, 1999: all Fv can be encoded by 20 integer
parameters.

Thurston, 1998: all Fv are parametrized by 10 complex
parameters.

Sah (1994) Thurston’s result implies that the number of
fullerenes Fv is ∼ v9.
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Useful fullerene-like3-valent maps

Polyhedra (p5, p6, pn) for n = 4, 7 or 8 (math. chemistry)

Azulenoids (p5, p7) on torus g = 1; so, p5 = p7

azulen is an isomer C10H8 of naftalen

(p5, p6, p7) = (12, 142, 12),
v = 432, D6d
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Fulleroids

G-fulleroid: cubic polyhedron with p = (p5, pn) and
symmetry group G; so, pn = p5−12

n−6
.

Fowler et al., 1993: G-fulleroids with n = 6 (fullerenes)
exist for 28 groups G.

Kardos, 2007: G-fulleroids with n = 7 exists for 36
groups G; smallest for G = Ih has 500 vertices.
There are infinity of G-fulleroids for all n ≥ 7 if and only if
G is a subgroup of Ih; there are 22 types of such groups.

Dress-Brinkmann, 1986: there are 2 smallest
I-fulleroids with n = 7; they have 260 vertices.

D-Delgado, 2000: 2 infinite series of I-fulleroids and
smallest ones for n = 8, 10, 12, 14, 15.

Jendrol-Trenkler, 2001: I-fulleroids for all n ≥ 8.
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The smallestIh-fulleroid with n = 9

In general, n-fulleroid has 20 + 2pn(n − 5) vertices

F5,9(Ih) = P (F60(Ih)) (pentacon of Truncated Icosahedron)
v = 180 and p5 = 72, p9 = 20
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The smallestIh-fulleroid with n = 10

F5,10(Ih) = T1(F60(Ih)) (triacon T1 of Truncated Icosahedron)
v = 140 and p5 = 60, p10 = 12
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The smallest fulleroid with n = 15

F5,15(Ih) = T2(F60(Ih)) (triacon T2 of Truncated Icosahedron)
v = 260 and p5 = 120, p15 = 12

– p. 11/66



Schwarzits
Schwarzits (p6, p7, p8) on minimal surfaces of constant
negative curvature (g ≥ 3). We consider case g = 3:

Schwarz P -surface Schwarz D-surface

Take a 3-valent map of genus 3 and cut it along zigzags

and paste it to form D- or P -surface.

One needs 3 non-intersecting zigzags. For example,
Klein regular map D56 = (73) has 5 types of such triples
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(6, 7)-surfaces

(1, 1)
D168: putative
carbon, 1992,

(Vanderbilt-Tersoff)
(0, 2) (1, 2)

(p6, p7 = 24), v = 2p6 + 56 = 56(p2 + pq + q2)

Unit cell of (1, 0) has p6 = 0, v = 56: Klein regular map (73).
D56, D168 and (6, 7)-surfaces are analogs of F20(Ih), F60(Ih)

and icosahedral fullerenes.
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(6, 8)-surfaces

(1, 1)
(0, 2)

(1, 2)

Unit cell with p6 = 0, p8 = 12: Dyck regular map P32 = (83).
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d-dimensional fullerenes
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Fulerene manifolds

(d − 1)-dim. simple (d-valent) manifold (loc. homeomorphic
to R

d−1) compact connected, any 2-face is 5- or 6-gon.
So, any i-face, 3 ≤ i ≤ d, is an polytopal i-fullerene.
So, d = 2, 3, 4 or 5 only since (Kalai, 1990) any 5-polytope
has a 3- or 4-gonal 2-face.

All finite 3-fullerenes

∞: plane 3- and space 4-fullerenes

4 constructions of finite 4-fullerenes (all from 120-cell):
A (tubes of 120-cells) and B (coronas)
Inflation-decoration method (construction C, D)

Quotient fullerenes; polyhexes

5-fullerenes from tiling of H4 by 120-cell
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All finite 3-fullerenes

Euler formula χ = v − e + p = p5

2
≥ 0.

But χ =

{

2(1 − g) if oriented
2 − g if not

Any 2-manifold is homeomorphic to S2 with g (genus)
handles (cyl.) if oriented or cross-caps (Möbius) if not.

g 0 1(or.) 2(not or.) 1(not or.)

surface S2 T 2 K2 P 2

p5 12 0 0 6

p6 ≥ 0, 6= 1 ≥ 7 ≥ 9 ≥ 0, 6= 1, 2

3-fullerene usual sph. polyhex polyhex projective
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Smallest non-spherical finite3-fullerenes

Toric fullerene
Klein bottle

fullerene projective fullerene
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Non-spherical finite3-fullerenes

Projective fullerenes are antipodal quotients of centrally
symmetric spherical fullerenes, i.e. with symmetry Ci,
C2h, D2h, D6h, D3d, D5d, Th, Ih. So, v ≡ 0 (mod 4).
Smallest CS fullerenes F20(Ih), F32(D3d), F36(D6h)

Toroidal fullerenes have p5 = 0. They are described by
Negami in terms of 3 parameters.

Klein bottle fullerenes have p5 = 0. They are obtained
as quotient of toroidal ones by a fixed-point free
involution reversing the orientation.
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Plane fullerenes (infinite3-fullerenes)

Plane fullerene: a 3-valent tiling of E2 by (combinatorial)
5- and 6-gons.

If p5 = 0, then it is the graphite {63} = F∞ = 63.

Theorem: plane fullerenes have p5 ≤ 6 and p6 = ∞.

A.D. Alexandrov (1958): any metric on E2 of
non-negative curvature can be realized as a metric of
convex surface on E3.
Consider plane metric such that all faces became
regular in it. Its curvature is 0 on all interior points
(faces, edges) and ≥ 0 on vertices.
A convex surface is at most half S2.
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Space fullerenes (infinite4-fullerene)

4 Frank-Kasper polyhedra (isolated-hexagon
fullerenes): F20(Ih), F24(D6d), F26(D3h), F28(Td)

FK space fullerene: a 4-valent tiling of E3 by them.
Space fullerene: a 4-valent tiling of E3 by any fullerenes;
Deza-Shtogrin, 1999: unique known non-FK example.

FK space fullerenes occur in:
ordered tetrahedrally closed-packed phases of
metallic alloys with cells being atoms. There are
> 20 t.c.p. alloys (in addition to all quasicrystals)
soap froths (foams, liquid crystals)
hypothetical silicate (or zeolite) if vertices are
tetrahedra SiO4 (or SiAlO4) and cells H2O

better solution to the Kelvin problem
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Main examples ofFK space fullerenes

Also in clathrate “ice-like” hydrates: vertices are H2O,
hydrogen bonds, cells are sites of solutes (Cl, Br, . . . ).

t.c.p. alloys exp. clathrate # 20 # 24 # 26 # 28

A15 Cr3.Si I:4Cl2.7H2O 1 3 0 0

C15 MgCu2 II:CHCl3.17H2O 2 0 0 1

Z Zr4Al3 III:Br2.86H2O 3 2 2 0

σ Cr46.F e54 5 8 2 0

µ Mo6Co7 7 2 2 2

δ MoNi 6 5 2 1

C V2(Co, Si)3 15 2 2 6

T Mg32(Zn, Al)49 TI (Bergman) 49 6 6 20

SM TP (Sadoc-Mossieri) 49 9 0 26
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Frank-Kasper polyhedra and A15

Mean face-size of all known space FK fullerenes is in
[5 + 1

10
(C15), 5 + 1

9
(A15)]. Closer to impossible 5 (120-cell on

3-sphere) means energetically competitive with diamond.
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Non-FK space fullerene: is it unique?
The only known which is not by F20, F24, F26 and F28(Td).
By F20, F24 and its elongation F36(D6h) in ratio 7 : 2 : 1;
so, best known mean face-size 5.091 < 5.1(C15).

All space fullerenes with at most 7 kinds of vertices:
A15, C15, Z, σ and this one (Delgado, O’Keeffe; 3,3,5,7,7).
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Kelvin problem

Partition E3 into cells D of equal volume and minimal
surface, i.e., with maximal IQ(D) = 36πV 2

A3 .

Lord Kelvin, 1887
IQ(curved tr.Oct.) ≈ 0.757

IQ(tr.Oct.) ≈ 0.753

Weaire and Phelan, 1994
IQ(unit cell of A15) ≈ 0.764

2 curved F20 and 6 F24

In E2, the best is (Ferguson, Hales) graphite F∞ = (63)
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Projection of 120-cell in 3-space (G.Hart)

(533): 600 vertices, 120 dodecahedral facets, |Aut| = 14400
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Regular (convex) polytopes
A regular polytope is a polytope, whose symmetry group
acts transitively on its set of flags. The list consists of:

regular polytope group
regular polygon Pn I2(n)

Icosahedron and Dodecahedron H3

120-cell and 600-cell H4

24-cell F4

γn(hypercube) and βn(cross-polytope) Bn

αn(simplex) An=Sym(n + 1)

There are 3 regular tilings of Euclidean plane: 44 = δ2, 36
and 63, and an infinity of regular tilings pq of hyperbolic
plane. Here pq is shortened notation for (pq).
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2-dim. regular tilings and honeycombs
Columns and rows indicate vertex figures and facets , resp.
Blue are elliptic (spheric), red are parabolic (Euclidean).

2 3 4 5 6 7 m ∞

2 22 23 24 25 26 27 2m 2∞

3 32 α3 β3 Ico 36 37 3m 3∞

4 42 γ3 δ2 45 46 47 4m 4∞

5 52 Do 54 55 56 57 5m 5∞

6 62 63 64 65 66 67 6m 6∞

7 72 73 74 75 76 77 7m 7∞

m m2 m3 m4 m5 m6 m7 mm m∞

∞ ∞2 ∞3 ∞4 ∞5 ∞6 ∞7 ∞m ∞∞
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3-dim. regular tilings and honeycombs

α3 γ3 β3 Do Ico δ2 63 36

α3 α4∗ β4∗ 600- 336

β3 24- 344

γ3 γ4∗ δ3∗ 435* 436*

Ico 353

Do 120- 534 535 536

δ2 443* 444*

36 363

63 633* 634* 635* 636*
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4-dim. regular tilings and honeycombs

α4 γ4 β4 24- 120- 600- δ3

α4 α5∗ β5∗ 3335

β4 De(D4)

γ4 γ5∗ δ4∗ 4335∗

24- V o(D4) 3434

600-

120- 5333 5334 5335

δ3 4343∗
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Finite 4-fullerenes

χ = f0 − f1 + f2 − f3 = 0 for any finite closed 3-manifold,
no useful equivalent of Euler formula.

Prominent 4-fullerene: 120-cell.
Conjecture : it is unique equifacetted 4-fullerene
(≃ Do = F20)

Pasini: there is no 4-fullerene facetted with C60(Ih)
(4-football)

Few types of putative facets: ≃ F20, F24 (hexagonal
barrel), F26, F28(Td), F30(D5h) (elongated
Dodecahedron), F32(D3h), F36(D6h) (elongated F24)

∞: “greatest” polyhex is 633
(convex hull of vertices of 63, realized on a horosphere);
its fundamental domain is not compact but of finite volume
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4 constructions of finite 4-fullerenes

|V | 3-faces are ≃ to
120-cell∗ 600 F20 = Do

∀i ≥ 1 A∗

i 560i + 40 F20, F30(D5h)

∀3 − full.F B(F ) 30v(F ) F20, F24, F (two)
decoration C(120-cell) 20600 F20, F24, F28(Td)

decoration D(120-cell) 61600 F20, F26, F32(D3h)

∗ indicates that the construction creates a polytope;
otherwise, the obtained fullerene is a 3-sphere.
Ai: tube of 120-cells
B: coronas of any simple tiling of R

2 or H2

C, D: any 4-fullerene decorations
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Construction A of polytopal 4-fullerenes

Similarly, tubes of 120-cell’s are obtained in 4D
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Inflation method

Roughly: find out in simplicial d-polytope (a dual
d-fullerene F ∗) a suitable “large” (d − 1)-simplex,
containing an integer number t of “small” (fundamental)
simplices.

Constructions C, D: F ∗=600-cell; t = 20, 60, respectively.

The decoration of F ∗ comes by “barycentric homothety”
(suitable projection of the “large” simplex on the new
“small” one) as the orbit of new points under the
symmetry group
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All known 5-fullerenes

Exp 1: 5333 (regular tiling of H4 by 120-cell)

Exp 2 (with 6-gons also): glue two 5333’s on some
120-cells and delete their interiors. If it is done on only
one 120-cell, it is R × S3 (so, simply-connected)

Exp 3: (finite 5-fullerene): quotient of 5333 by its
symmetry group; it is a compact 4-manifold partitioned
into a finite number of 120-cells

Exp 3’: glue above

All known 5-fullerenes come as above

No polytopal 5-fullerene exist.
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Quotient d-fullerenes

A. Selberg (1960), A. Borel (1963): if a discrete group of
motions of a symmetric space has a compact fund. domain,
then it has a torsion-free normal subgroup of finite index.
So, quotient of a d-fullerene by such symmetry group is a
finite d-fullerene.
Exp 1: Poincaré dodecahedral space

quotient of 120-cell (on S3) by the binary icosahedral
group Ih of order 120; so, f -vector
(5, 10, 6, 1) = 1

120
f(120 − cell)

It comes also from F20 = Do by gluing of its opposite
faces with 1

10
right-handed rotation

Quot. of H3 tiling: by F20: (1, 6, 6, p5, 1) Seifert-Weber space
and by F24: (24, 72, 48 + 8 = p5 + p6, 8) Löbell space
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Polyhexes

Polyhexes on T 2, cylinder, its twist (Möbius surface) and K2

are quotients of graphite 63 by discontinuous and
fixed-point free group of isometries, generated by resp.:

2 translations,

a translation, a glide reflection

a translation and a glide reflection.

The smallest polyhex has p6 = 1: on T 2.
The “greatest” polyhex is 633
(the convex hull of vertices of 63, realized on a horosphere);
it is not compact (its fundamental domain is not compact),
but cofinite (i.e., of finite volume) infinite 4-fullerene.
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Zigzags, railroads and

knots in fullerenes
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Zigzags

A plane graph G
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Zigzags

take two edges
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Zigzags

Continue it left−right alternatively ....
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Zigzags

... until we come back.
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Zigzags

A self−intersecting zigzag
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Zigzags

A double covering of 18 edges: 10+10+16

z=10 ,  162z−vector 2,0
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z-knotted fullerenes

A zigzag in a 3-valent plane graph G is a circuit such
that any 2, but not 3 edges belong to the same face.

Zigzags can self-intersect in the same or opposite
direction.

Zigzags doubly cover edge-set of G.

A graph is z-knotted if there is unique zigzag.

What is proportion of z-knotted fullerenes among all Fn?
Schaeffer and Zinn-Justin, 2004, implies: for any m,
the proportion, among 3-valent n-vertex plane graphs
of those having ≤ m zigzags goes to 0 with n → ∞.

Conjecture : all z-knotted fullerenes are chiral and their
symmetries are all possible (among 28 groups for them)
pure rotation groups: C1, C2, C3, D3, D5.
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Railroads

A railroad in a 3-valent plane graph is a circuit of hexagonal
faces, such that any of them is adjacent to its neighbors on
opposite faces. Any railroad is bordered by two zigzags.

414(D3h) 442(C2v)

Railroads (as zigzags) can self-intersect (doubly or triply).
A 3-valent plane graph is tight if it has no railroad.
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Some special fullerenes

30, D5h

all 6-gons
in railroad
(unique)

36,D6h 38, C3v

all 5-, 6-
in rings
(unique)

48, D6d

all 5-gons
in alt. ring
(unique)

2nd one is the case t = 1 of infinite series F24+12t(D6d,h),
which are only ones with 5-gons organized in two 6-rings.

It forms, with F20 and F24, best known space fullerene tiling.

The skeleton of its dual is an isometric subgraph of 1

2
H8.
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First IPR fullerene with self-int. railroad

F96(D6d) realizes projection of Conway knot (4 × 6)∗
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Triply intersecting railroad in F172(C3v)
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Tight fullerenes

Tight fullerene is one without railroads, i.e., pairs of
”parallel” zigzags.

Clearly, any z-knotted fullerene (unique zigzag) is tight.

F140(I) is tight with z = 2815 (15 simple zigzags).

Conjecture : any tight fullerene has ≤ 15 zigzags.

Conjecture : All tight with simple zigzags are 9 known
ones (holds for all Fn with n ≤ 200).
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Tight Fn with simple zigzags

20 Ih, 206 28 Td, 127 48 D3, 169

60 D3, 1810 60 Ih, 1810 76 D2d, 224, 207
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Tight Fn with simple zigzags

88 T , 2212 92 Th, 246, 226

140 I, 2815
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Tight Fn with only simple zigzags

n group z-vector orbit lengths int. vector

20 Ih 106 6 25

28 Td 127 3,4 26

48 D3 169 3,3,3 28

60, IPR Ih 1810 10 29

60 D3 1810 1,3,6 29

76 D2d 224, 207 1,2,4,4 4, 29 and 210

88, IPR T 2212 12 211

92 Th 226, 246 6,6 211 and 210, 4

140, IPR I 2815 15 214

Conjecture: this list is complete (checked for n ≤ 200).
It gives 7 Grünbaum arrangements of plane curves.
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Two F60 with z-vector 1810

C60(Ih) F60(D3)

This pair was first answer on a question in B.Grunbaum
"Convex Polytopes" (Wiley, New York, 1967) about
non-existance of simple polyhedra with the same p-vector
but different zigzags.
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z-uniform Fn with n ≤ 60
n isomer orbit lengths z-vector int. vector

20 Ih:1 6 10
6

2
5

28 Td:2 4,3 127 26

40 Td:40 4 30
4

0,3 8
3

44 T :73 3 44
3

0,4 18
2

44 D2:83 2 662

5,10 36

48 C2:84 2 72
2

7,9 40

48 D3:188 3,3,3 169 28

52 C3:237 3 523

2,4 202

52 T :437 3 52
3

0,8 18
2

56 C2:293 2 842

7,13 44

56 C2:349 2 84
2

5,13 48

56 C3:393 3 56
3

3,5 20
2

60 C2:1193 2 902

7,13 50

60 D2:1197 2 90
2

13,8 48

60 D3:1803 6,3,1 1810 29

60 Ih:1812 10 18
10

2
9
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z-uniform IPR Cn with n ≤ 100

n isomer orbit lengths z-vector int. vector

80 Ih:7 12 20
12

0, 210

84 Td:20 6 426

0,1 85

84 D2d:23 4,2 42
6

0,1 8
5

86 D3:19 3 86
3

1,10 32
2

88 T :34 12 2212 211

92 T :86 6 46
6

0,3 8
5

94 C3:110 3 943

2,13 322

100 C2:387 2 150
2

13,22 80

100 D2:438 2 150
2

15,20 80

100 D2:432 2 1502

17,16 84

100 D2:445 2 150
2

17,16 84

IPR means the absence of adjacent pentagonal faces;
IPR enhanced stability of putative fullerene molecule.
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IPR z-knotted Fn with n ≤ 100

n signature isomers

86 43, 86∗ C2:2

90 47, 88 C1:7

53, 82 C2:19

71, 64 C2:6

94 47, 94∗ C1:60; C2:26, 126

65, 76 C2:121

69, 72 C2:7

96 49, 95 C1:65

53, 91 C1:7, 37, 63

98 49, 98∗ C2:191, 194, 196

63, 84 C1:49

75, 72 C1:29

77, 70 C1:5; C2:221

100 51, 99 C1:371, 377; C3:221

53, 97 C1:29, 113, 236

55, 95 C1:165

57, 93 C1:21

61, 89 C1:225

65, 85 C1:31, 234

The symbol ∗ above means that fullerene forms a perfect
matching of the fullerene skeleton, i.e., edges of
self-intersection of type I cover exactly once its vertex-set.
All, except F100(C3) above, have symmetry C1, C2.
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Perfect matching on fullerenes
Let G be a fullerene with one
zigzag with self-intersection numbers
(α1, α2). Here is the smallest one ,
F34(C2). →→

(i) α1 ≥ n

2
. If α1 = n

2
then

the edges of self-intersection of
type I form a perfect matching
PM

(ii) every face incident to 0 or 2

edges of PM

(iii) two faces, F1 and F2 are free of
PM , PM is organized around
them in concentric circles.

F2

F1
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z-knotted fullerenes: statistics forn ≤ 74

n # of Fn # of z-knotted

34 6 1

36 15 0

38 17 4

40 40 1

42 45 6

44 89 9

46 116 15

48 199 23

50 271 30

52 437 42

54 580 93

56 924 87

58 1205 186

60 1812 206

62 2385 341

64 3465 437

66 4478 567

68 6332 894

70 8149 1048

72 11190 1613

74 14246 1970

Proportion of z-knotted ones among all Fn looks stable.
For z-knotted among 3-valent ≤ n-vertex plane graphs, it is
34% if n = 24 (99% of them are C1) but goes to 0 if n → ∞.
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Intersection of zigzags

For any n, there is a fullerene F36n−8 with two simple
zigzags having intersection 2n; above n = 4.
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Face-regular fullerenes
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Face-regular fullerenes

A fullerene called 5Ri if every 5-gon has i exactly 5-gonal
neighbors; it is called 6Ri if every 6-gon has exactly i

6-gonal neigbors.

i 0 1 2 3 4 5
# of 5Ri ∞ ∞ ∞ 2 1 1
# of 6Ri 4 2 8 5 7 1

28, D2 32, D3

All fullerenes, which are 6R1
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Fullerenes6R2 with hexagons in1 ring

D5h; 30 D2; 32 D3d; 32

D2d; 36 D2; 40
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Fullerenes5R2 with pentagons in1 ring

D2d; 36 D3d; 44

D6d; 48 D2; 44
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Fullerenes6R2 with hexagons in> 1 ring

D3h; 32 C3v; 38 D5h; 40
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Fullerenes5R2 with pentagons in> 1 ring

C3v; 38

infinite family:
4 triples in F4t,
t ≥ 10, from

collapsed 34t+8

infinite family:
F24+12t(D6d),

t ≥ 1,
D6h if t odd

elongations of
hexagonal barrel
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All fullerenes, which are 6R3

36, D2 44, T (also 5R2) 48, D3

52, T (also 5R1) 60, Ih (also 5R0)
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All fullerenes, which are 6R4

40, D5d 56, Td

(also 5R2)
68, D3d 68, Td

(also 5R1)

72, D2d 80, D5h (also 5R0) 80, Ih (also 5R0)
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Embedding of fullerenes
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Fullerenes as isom. subgraphs of half-cubes

All isometric embeddings of skeletons (with (5Ri, 6Rj) of
Fn), for Ih- or I-fullerenes or their duals, are:

F20(Ih)(5, 0) → 1

2
H10 F ∗

20(Ih)(5, 0) → 1

2
H6

F ∗

60(Ih)(0, 3) → 1

2
H10 F80(Ih)(0, 4) → 1

2
H22

(Shpectorov-Marcusani, 2007: all others isometric Fn

are 3 below (and number of isometric F ∗

n is finite):

F26(D3h)(−, 0) → 1

2
H12

F40(Td)(2,−) → 1

2
H15 F44(T )(2, 3) → 1

2
H16

F ∗

28(Td)(3, 0) → 1

2
H7 F ∗

36(D6h)(2,−) → 1

2
H8

Also, for graphite lattice (infinite fullerene), it holds:
(63)=F∞(0, 6) → H∞, Z3 and (36)=F ∗

∞
(0, 6) → 1

2
H∞, 1

2
Z3.
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Embeddable dual fullerenes in cells

The five above embeddable dual fullerenes F ∗

n correspond
exactly to five special (Katsura’s "most uniform") partitions
(53, 52.6, 5.62, 63) of n vertices of Fn into 4 types by 3
gonalities (5- and 6-gonal) faces incident to each vertex.

F ∗

20(Ih) → 1

2
H6 corresponds to (20,−,−,−)

F ∗

28(Td) →
1

2
H7 corresponds to (4, 24,−,−)

F ∗

36(D6h) → 1

2
H8 corresponds to (−, 24, 12,−)

F ∗

60(Ih) → 1

2
H10 corresponds to (−,−, 60,−)

F ∗

∞
→ 1

2
H∞ corresponds to (−,−,−,∞)

It turns out, that exactly above 5 fullerenes were identified
as clatrin coated vesicles of eukaryote cells (the vitrified cell
structures found during cryo-electronic microscopy).
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