Fullerene Manifolds and Special Fullerenes

Michel Deza

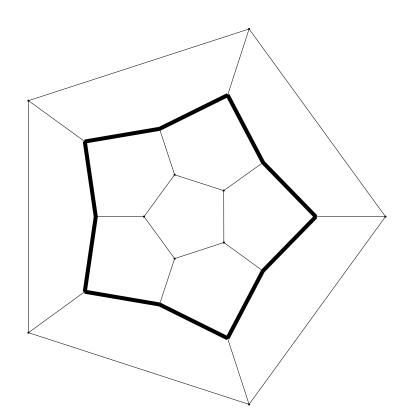
Ecole Normale Superieure, Paris

Definition of fullerene

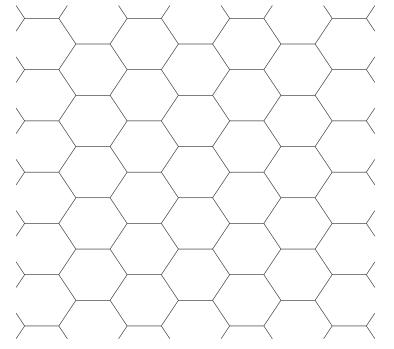
A fullerene F_v is a simple polyhedron whose v vertices are arranged in 12 pentagons and $(\frac{v}{2} - 10)$ hexagons.

- F_v exist for all even $v \ge 20$ except v = 22.
- $1, 1, 1, 2, 5 \dots, 1812, \dots 214127713, \dots$ isomers F_v , for $v = 20, 24, 26, 28, 30 \dots, 60, \dots, 200, \dots$
- Thurston, 1998, implies: number of F_v grows as v^9 .
- $F_{60}(I_h)$, $F_{80}(I_h)$ are the only icosahedral (i.e., with highest possible symmetry I_h or I) fullerenes with $v \le 80$ vertices.

The range of fullerenes

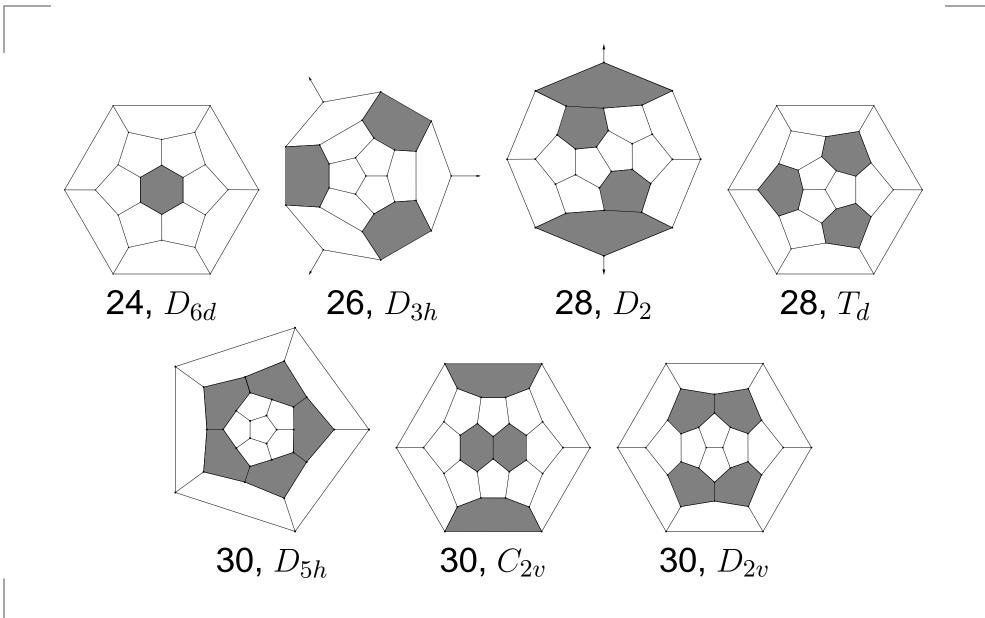


Dodecahedron $F_{20}(I_h)$: the smallest fullerene



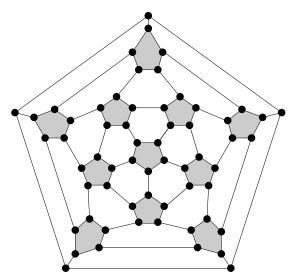
Graphite lattice (6^3) as F_{∞} : the "largest fullerene"

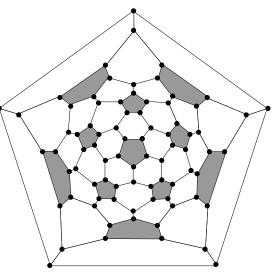
Small fullerenes



Icosahedral fullerenes

- v = 20T, where $T = a^2 + ab + b^2$ (triangulation number) with $0 \le b \le a$; all come by construction $GC_{a,b}$.
- I_h (extended icosahedral group): for a = b ≠ 0 or b = 0;
 I (proper icosahedral group): for 0 < b < a.
- All except $F_{20}(I_h)$ are IPR (isolated pentagons).





 $F_{60}(I_h) = (1, 1)$ -dodecahedron $F_{80}(I_h) = (2, 0)$ -dodecahedron Truncated Icosahedron Chamfered Dodecahedron

Parametrizing fullerenes

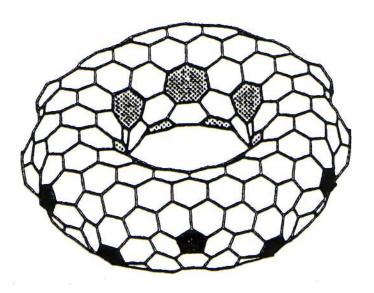
Since hexagons are of zero curvature, it suffices to give relative positions of faces of non-zero curvature.

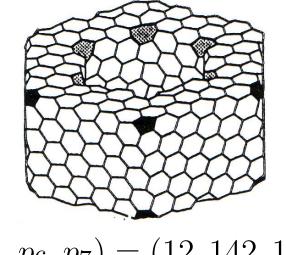
- Goldberg, 1937: all F_v of symmetry (I, I_h) are given by Goldberg-Coxeter construction $GC_{a,b}$.
- Fowler and al., 1988: all F_v of symmetry D_5 , D_6 or T are described in terms of 4 integer parameters.
- Graver, 1999: all F_v can be encoded by 20 integer parameters.
- Thurston, 1998: all F_v are parametrized by 10 complex parameters.
- Sah (1994) Thurston's result implies that the number of fullerenes F_v is $\sim v^9$.

Useful fullerene-like 3-valent maps

Polyhedra (p_5, p_6, p_n) for n = 4, 7 or 8 (math. chemistry)
Azulenoids (p_5, p_7) on torus g = 1; so, $p_5 = p_7$

azulen \checkmark is an isomer $C_{10}H_8$ of naftalen \checkmark





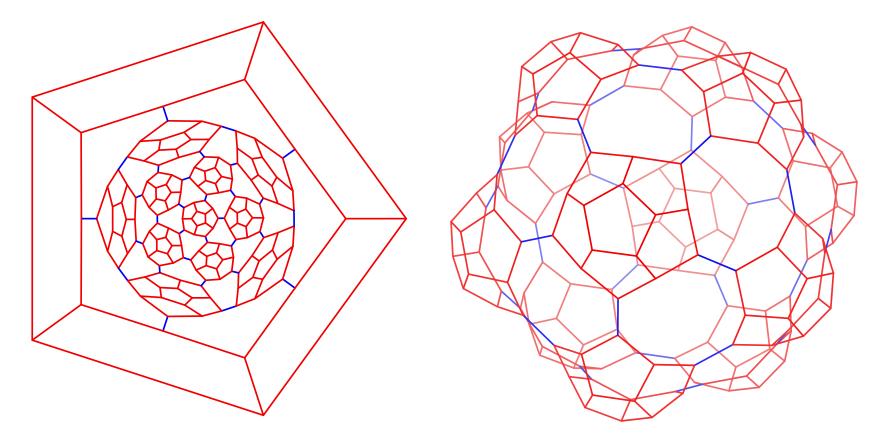
 $(p_5, p_6, p_7) = (12, 142, 12),$ $v = 432, D_{6d}$

Fulleroids

- *G*-fulleroid: cubic polyhedron with $p = (p_5, p_n)$ and symmetry group *G*; so, $p_n = \frac{p_5 12}{n-6}$.
- Fowler et al., 1993: G-fulleroids with n = 6 (fullerenes) exist for 28 groups G.
- Kardos, 2007: *G*-fulleroids with n = 7 exists for 36 groups *G*; smallest for $G = I_h$ has 500 vertices. There are infinity of *G*-fulleroids for all $n \ge 7$ if and only if *G* is a subgroup of I_h ; there are 22 types of such groups.
- Dress-Brinkmann, 1986: there are 2 smallest *I*-fulleroids with n = 7; they have 260 vertices.
- D-Delgado, 2000: 2 infinite series of *I*-fulleroids and smallest ones for n = 8, 10, 12, 14, 15.
- Jendrol-Trenkler, 2001: *I*-fulleroids for all $n \ge 8$.

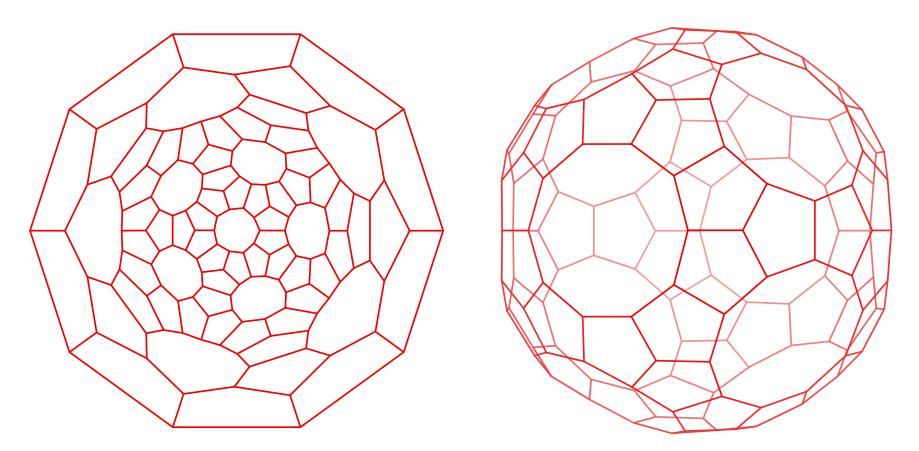
The smallest I_h -fulleroid with n = 9

In general, *n*-fulleroid has $20 + 2p_n(n-5)$ vertices



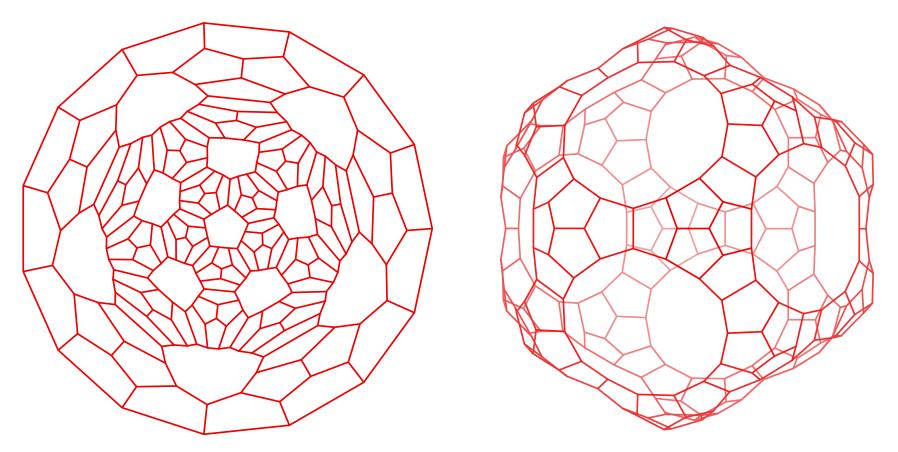
 $F_{5,9}(I_h) = P(F_{60}(I_h))$ (pentacon of Truncated Icosahedron) v = 180 and $p_5 = 72, p_9 = 20$

The smallest I_h -fulleroid with n = 10



 $F_{5,10}(I_h) = T_1(F_{60}(I_h))$ (triacon T_1 of Truncated Icosahedron) v = 140 and $p_5 = 60, p_{10} = 12$

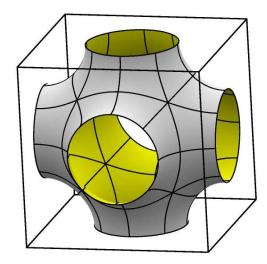
The smallest fulleroid with n = 15

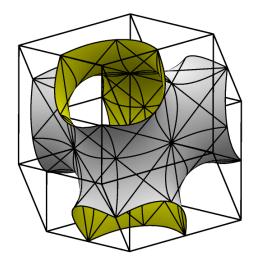


 $F_{5,15}(I_h) = T_2(F_{60}(I_h))$ (triacon T_2 of Truncated Icosahedron) v = 260 and $p_5 = 120, p_{15} = 12$

Schwarzits

Schwarzits (p_6, p_7, p_8) on minimal surfaces of constant negative curvature ($g \ge 3$). We consider case g = 3:



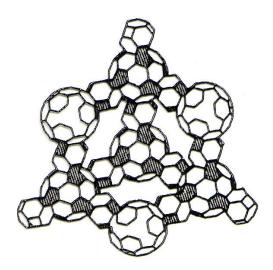


Schwarz *P*-surface

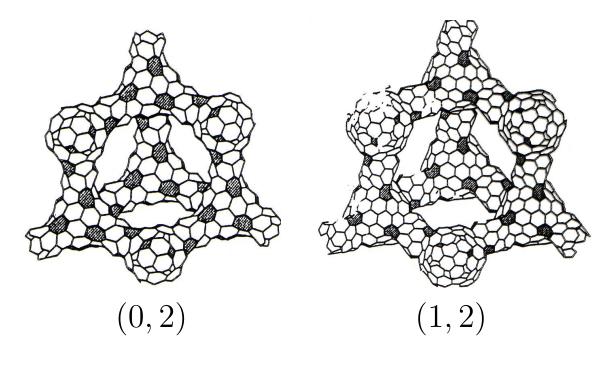
Schwarz *D*-surface

- Take a 3-valent map of genus 3 and cut it along zigzags $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ and paste it to form *D* or *P*-surface.
- One needs 3 non-intersecting zigzags. For example,
 Klein regular map $D56 = (7^3)$ has 5 types of such triples.

(6,7)-surfaces

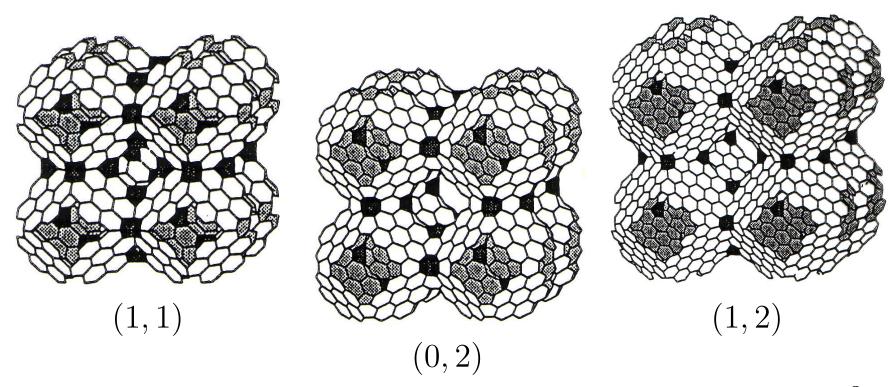


(1,1)
D168: putative
carbon, 1992,
(Vanderbilt-Tersoff)



 $(p_6, p_7 = 24), v = 2p_6 + 56 = 56(p^2 + pq + q^2)$ Unit cell of (1,0) has $p_6 = 0, v = 56$: Klein regular map (7³). D56, D168 and (6,7)-surfaces are analogs of $F_{20}(I_h), F_{60}(I_h)$ and icosahedral fullerenes.

(6, 8)-surfaces



Unit cell with $p_6 = 0, p_8 = 12$: Dyck regular map $P32 = (8^3)$.

d-dimensional fullerenes

Fulerene manifolds

(d-1)-dim. simple (*d*-valent) manifold (loc. homeomorphic to \mathbb{R}^{d-1}) compact connected, any 2-face is 5- or 6-gon. So, any *i*-face, $3 \le i \le d$, is an polytopal *i*-fullerene. So, d = 2, 3, 4 or 5 only since (Kalai, 1990) any 5-polytope has a 3- or 4-gonal 2-face.

- All finite 3-fullerenes
- ∞ : plane 3- and space 4-fullerenes
- 4 constructions of finite 4-fullerenes (all from 120-cell):
 - A (tubes of 120-cells) and B (coronas)
 - Inflation-decoration method (construction C, D)
- Quotient fullerenes; polyhexes
- **•** 5-fullerenes from tiling of H^4 by 120-cell

All finite 3-fullerenes

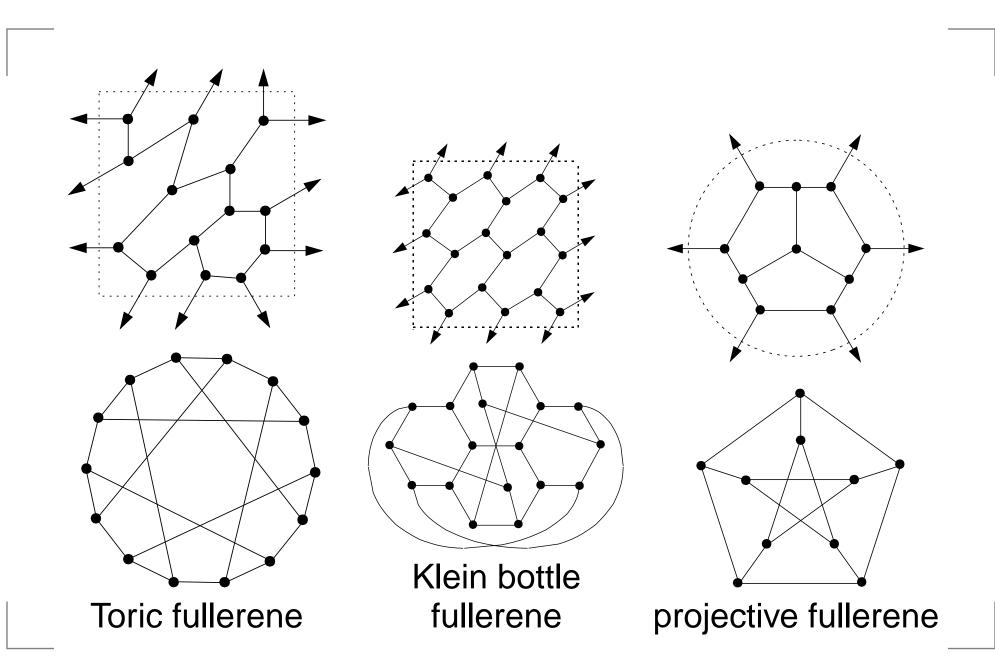
• Euler formula
$$\chi = v - e + p = \frac{p_5}{2} \ge 0$$
.

But
$$\chi = \begin{cases} 2(1-g) & \text{if oriented} \\ 2-g & \text{if not} \end{cases}$$

Any 2-manifold is homeomorphic to S^2 with g (genus) handles (cyl.) if oriented or cross-caps (Möbius) if not.

g	0	1(or.)	2(not or.)	$1(not \ or.)$
surface	S^2	T^2	K^2	P^2
p_5	12	0	0	6
p_6	$\geq 0, \neq 1$	≥ 7	≥ 9	$\geq 0, \neq 1, 2$
3-fullerene	usual sph.	polyhex	polyhex	projective

Smallest non-spherical finite 3-fullerenes



Non-spherical finite 3-fullerenes

- Projective fullerenes are antipodal quotients of centrally symmetric spherical fullerenes, i.e. with symmetry C_i , C_{2h} , D_{2h} , D_{6h} , D_{3d} , D_{5d} , T_h , I_h . So, $v \equiv 0 \pmod{4}$. Smallest CS fullerenes $F_{20}(I_h)$, $F_{32}(D_{3d})$, $F_{36}(D_{6h})$
- Toroidal fullerenes have $p_5 = 0$. They are described by Negami in terms of 3 parameters.
- Klein bottle fullerenes have $p_5 = 0$. They are obtained as quotient of toroidal ones by a fixed-point free involution reversing the orientation.

Plane fullerenes (infinite 3-fullerenes)

- Plane fullerene: a 3-valent tiling of E² by (combinatorial) 5- and 6-gons.
- If $p_5 = 0$, then it is the graphite $\{6^3\} = F_{\infty} = 63$.
- ▶ Theorem: plane fullerenes have $p_5 \le 6$ and $p_6 = \infty$.
- A.D. Alexandrov (1958): any metric on E^2 of non-negative curvature can be realized as a metric of convex surface on E^3 .

Consider plane metric such that all faces became regular in it. Its curvature is 0 on all interior points (faces, edges) and ≥ 0 on vertices.

A convex surface is at most half S^2 .

Space fullerenes (infinite 4-fullerene)

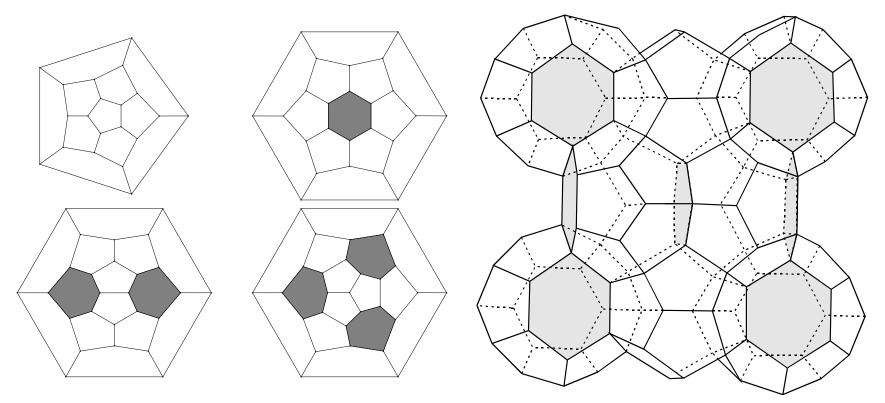
- 4 Frank-Kasper polyhedra (isolated-hexagon fullerenes): $F_{20}(I_h)$, $F_{24}(D_{6d})$, $F_{26}(D_{3h})$, $F_{28}(T_d)$
- *FK* space fullerene: a 4-valent tiling of E³ by them.
 Space fullerene: a 4-valent tiling of E³ by any fullerenes;
 Deza-Shtogrin, 1999: unique known non-*FK* example.
- FK space fullerenes occur in:
 - ordered tetrahedrally closed-packed phases of metallic alloys with cells being atoms. There are > 20 t.c.p. alloys (in addition to all quasicrystals)
 - soap froths (foams, liquid crystals)
 - hypothetical silicate (or zeolite) if vertices are tetrahedra SiO_4 (or $SiAlO_4$) and cells H_2O
 - better solution to the Kelvin problem

Main examples of FK space fullerenes

Also in clathrate "ice-like" hydrates: vertices are H_2O , hydrogen bonds, cells are sites of solutes (Cl, Br, ...).

t.c.p.	alloys	exp. clathrate	# 20	# 24	# 26	# 28
A_{15}	$Cr_3.Si$	$1:4Cl_2.7H_2O$	1	3	0	0
C_{15}	$MgCu_2$	$II:CHCl_3.17H_2O$	2	0	0	1
Z	Zr_4Al_3	$III: Br_2.86H_2O$	3	2	2	0
σ	$Cr_{46}.Fe_{54}$		5	8	2	0
μ	Mo_6Co_7		7	2	2	2
δ	MoNi		6	5	2	1
C	$V_2(Co,Si)_3$		15	2	2	6
T	$Mg_{32}(Zn,Al)_{49}$	T_I (Bergman)	49	6	6	20
$\int SM$		T_P (Sadoc-Mossieri)	49	9	0	26

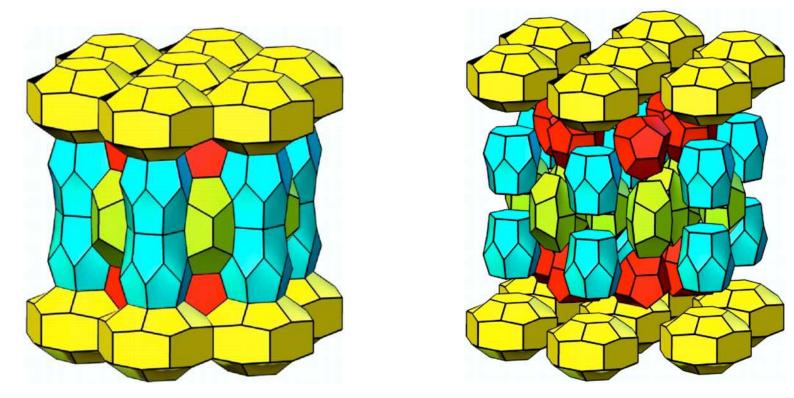
Frank-Kasper polyhedra and A_{15}



Mean face-size of all known space FK fullerenes is in $[5 + \frac{1}{10}(C_{15}), 5 + \frac{1}{9}(A_{15})]$. Closer to impossible 5 (120-cell on 3-sphere) means energetically competitive with diamond.

Non-FK **space fullerene: is it unique?**

The only known which is not by F_{20} , F_{24} , F_{26} and $F_{28}(T_d)$. By F_{20} , F_{24} and its elongation $F_{36}(D_{6h})$ in ratio 7 : 2 : 1; so, best known mean face-size $5.091 < 5.1(C_{15})$.



All space fullerenes with at most 7 kinds of vertices: A_{15} , C_{15} , Z, σ and this one (Delgado, O'Keeffe; 3,3,5,7,7).

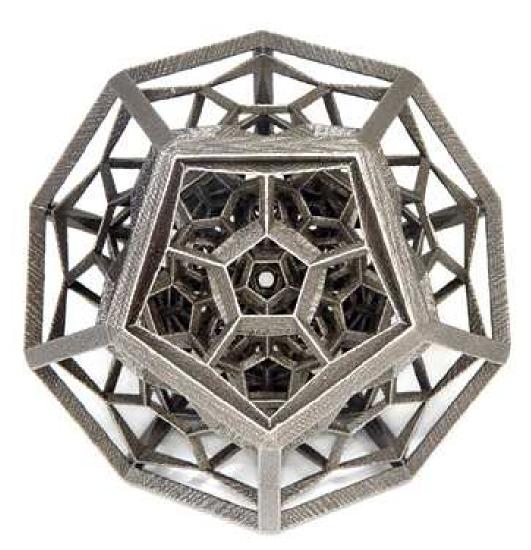
Kelvin problem

Partition E^3 into cells D of equal volume and minimal surface, i.e., with maximal $IQ(D) = \frac{36\pi V^2}{A^3}$.

Lord Kelvin, 1887 IQ(curved tr.Oct.) ≈ 0.757 IQ(tr.Oct.) ≈ 0.753 F^2 the best is (Forguson Weaire and Phelan, 1994 IQ(unit cell of A_{15}) ≈ 0.764 2 curved F_{20} and 6 F_{24}

In E^2 , the best is (Ferguson, Hales) graphite $F_{\infty}=(6^3)$

Projection of 120-cell in 3-space (G.Hart)



(533): 600 vertices, 120 dodecahedral facets, |Aut| = 14400

Regular (convex) polytopes

A regular polytope is a polytope, whose symmetry group acts transitively on its set of flags. The list consists of:

regular polytope	group
regular polygon P_n	$I_2(n)$
Icosahedron and Dodecahedron	H_3
120-cell and 600-cell	H_4
24-cell	F_4
γ_n (hypercube) and β_n (cross-polytope)	B_n
α_n (simplex)	$A_n = Sym(n+1)$

There are 3 regular tilings of Euclidean plane: $44 = \delta_2$, 36 and 63, and an infinity of regular tilings pq of hyperbolic plane. Here pq is shortened notation for (p^q) .

2-dim. regular tilings and honeycombs

Columns and rows indicate vertex figures and facets, resp. Blue are elliptic (spheric), red are parabolic (Euclidean).

	2	3	4	5	6	7	m	∞
2	22	23	24	25	26	27	2 m	2∞
3	32	$lpha_3$	eta_3	lco	36	37	3m	3∞
4	42	γ_3	δ_2	45	46	47	4m	4∞
5	52	Do	54	55	56	57	5m	5∞
6	62	63	64	65	66	67	6m	6∞
7	72	73	74	75	76	77	7m	7∞
m	m2	m3	m4	m5	m6	m7	mm	$m\infty$
∞	$\infty 2$	$\infty 3$	$\infty 4$	$\infty 5$	$\infty 6$	$\infty 7$	∞m	$\infty\infty$

3-dim. regular tilings and honeycombs

	$lpha_3$	γ_3	eta_3	Do	Ico	δ_2	63	36
$lpha_3$	$lpha_4*$		eta_4*		600-			336
β_3		24-				344		
γ_3	γ_4*		δ_3*		435*			436*
Ico				353				
Do	120-		534		535			536
δ_2		443*				444*		
36							363	
63	633*		634*		635*			636*

4-dim. regular tilings and honeycombs

	$lpha_4$	γ_4	eta_4	24-	120-	600-	δ_3
$lpha_4$	$lpha_5*$		eta_5*			3335	
eta_4				$De(D_4)$			
γ_4	γ_5*		δ_4*			4335*	
24-		$Vo(D_4)$					3434
600-							
120-	5333		5334			5335	
δ_3				4343*			

Finite 4-fullerenes

- $\chi = f_0 f_1 + f_2 f_3 = 0$ for any finite closed 3-manifold, no useful equivalent of Euler formula.
- Prominent 4-fullerene: 120-cell.
 Conjecture: it is unique equifacetted 4-fullerene $(\simeq Do = F_{20})$
- Pasini: there is no 4-fullerene facetted with $C_{60}(I_h)$ (4-football)
- Few types of putative facets: $\simeq F_{20}$, F_{24} (hexagonal barrel), F_{26} , $F_{28}(T_d)$, $F_{30}(D_{5h})$ (elongated Dodecahedron), $F_{32}(D_{3h})$, $F_{36}(D_{6h})$ (elongated F_{24})

 ∞ : "greatest" polyhex is 633 (convex hull of vertices of 63, realized on a horosphere); its fundamental domain is not compact but of finite volume

4 constructions of finite 4-fullerenes

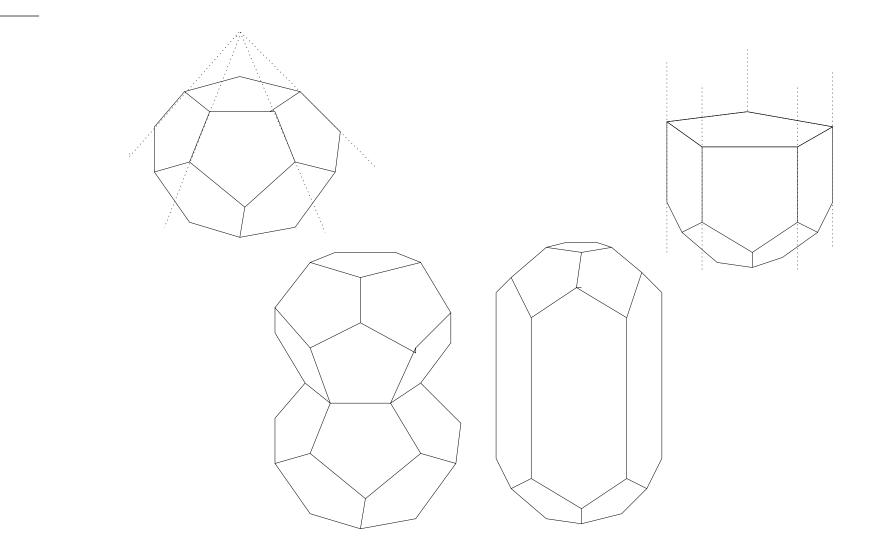
		V	3-faces are \simeq to
	120 -cell*	600	$F_{20} = Do$
$\forall i \geq 1$	A_i^*	560i + 40	F_{20} , $F_{30}(D_{5h})$
$\forall 3 - full.F$	B(F)	30v(F)	F ₂₀ , F ₂₄ , F(two)
decoration	C(120-cell)	20600	F_{20} , F_{24} , $F_{28}(T_d)$
decoration	D(120-cell)	61600	$F_{20}, F_{26}, F_{32}(D_{3h})$

indicates that the construction creates a polytope;
 otherwise, the obtained fullerene is a 3-sphere.

 A_i : tube of 120-cells

- *B*: coronas of any simple tiling of \mathbb{R}^2 or H^2
- C, D: any 4-fullerene decorations

Construction A of polytopal 4-fullerenes



Similarly, tubes of 120-cell's are obtained in 4D

Inflation method

- Roughly: find out in simplicial *d*-polytope (a dual *d*-fullerene *F**) a suitable "large" (*d* 1)-simplex, containing an integer number *t* of "small" (fundamental) simplices.
- Constructions C, D: $F^*=600$ -cell; t = 20, 60, respectively.
- The decoration of F* comes by "barycentric homothety" (suitable projection of the "large" simplex on the new "small" one) as the orbit of new points under the symmetry group

All known 5-fullerenes

- Exp 1: 5333 (regular tiling of H^4 by 120-cell)
- Exp 2 (with 6-gons also): glue two 5333's on some 120-cells and delete their interiors. If it is done on only one 120-cell, it is $\mathbb{R} \times S^3$ (so, simply-connected)
- Exp 3: (finite 5-fullerene): quotient of 5333 by its symmetry group; it is a compact 4-manifold partitioned into a finite number of 120-cells
- Exp 3': glue above
- All known 5-fullerenes come as above

No polytopal 5-fullerene exist.

Quotient *d*-fullerenes

A. Selberg (1960), A. Borel (1963): if a discrete group of motions of a symmetric space has a compact fund. domain, then it has a torsion-free normal subgroup of finite index. So, quotient of a *d*-fullerene by such symmetry group is a finite *d*-fullerene.

Exp 1: Poincaré dodecahedral space

- quotient of 120-cell (on S^3) by the binary icosahedral group I_h of order 120; so, *f*-vector $(5, 10, 6, 1) = \frac{1}{120}f(120 \text{cell})$
- It comes also from $F_{20} = Do$ by gluing of its opposite faces with $\frac{1}{10}$ right-handed rotation

Quot. of H^3 tiling: by F_{20} : $(1, 6, 6, p_5, 1)$ Seifert-Weber space and by F_{24} : $(24, 72, 48 + 8 = p_5 + p_6, 8)$ Löbell space

Polyhexes

Polyhexes on T^2 , cylinder, its twist (Möbius surface) and K^2 are quotients of graphite 63 by discontinuous and fixed-point free group of isometries, generated by resp.:

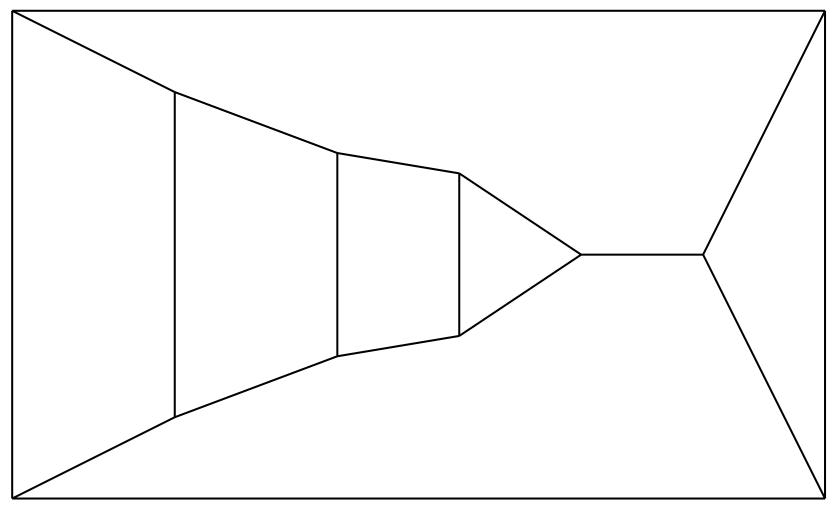
- 2 translations,
- a translation, a glide reflection
- a translation and a glide reflection.

The smallest polyhex has $p_6 = 1$: • • • on T^2 . The "greatest" polyhex is 633 (the convex hull of vertices of 63, realized on a horosphere); it is not compact (its fundamental domain is not compact), but cofinite (i.e., of finite volume) infinite 4-fullerene.

Zigzags, railroads and knots in fullerenes

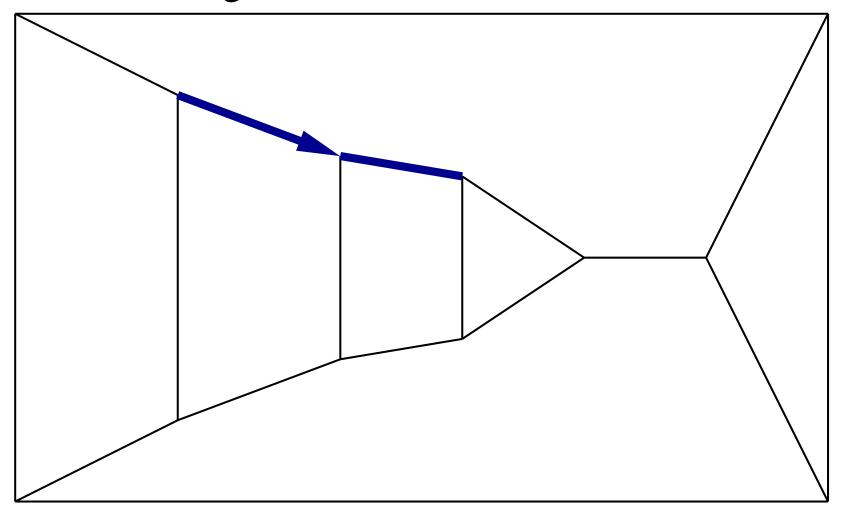
Zigzags

A plane graph G



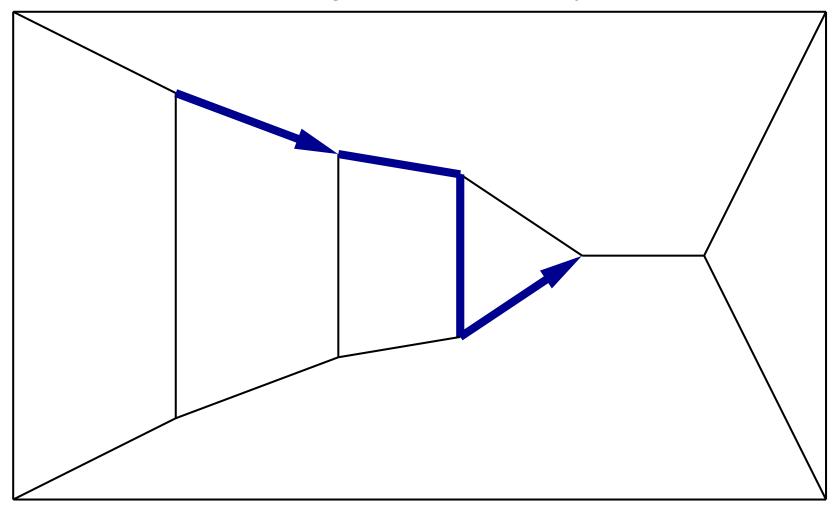
Zigzags

take two edges

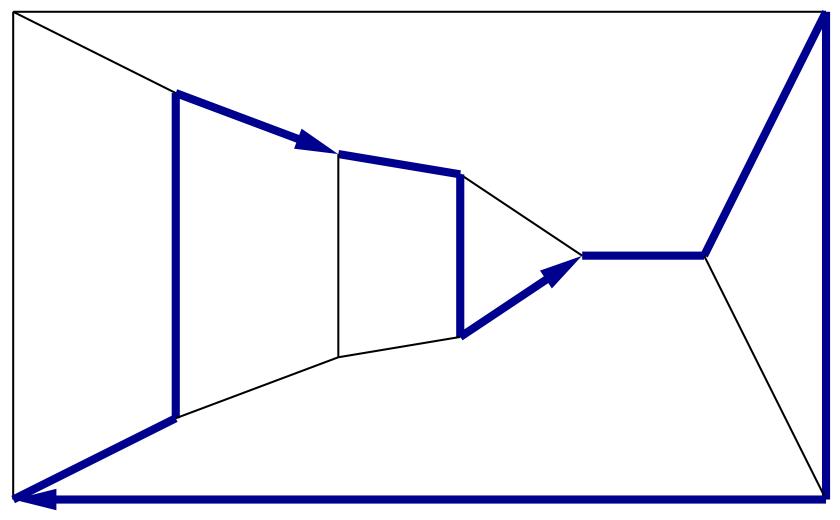


Zigzags

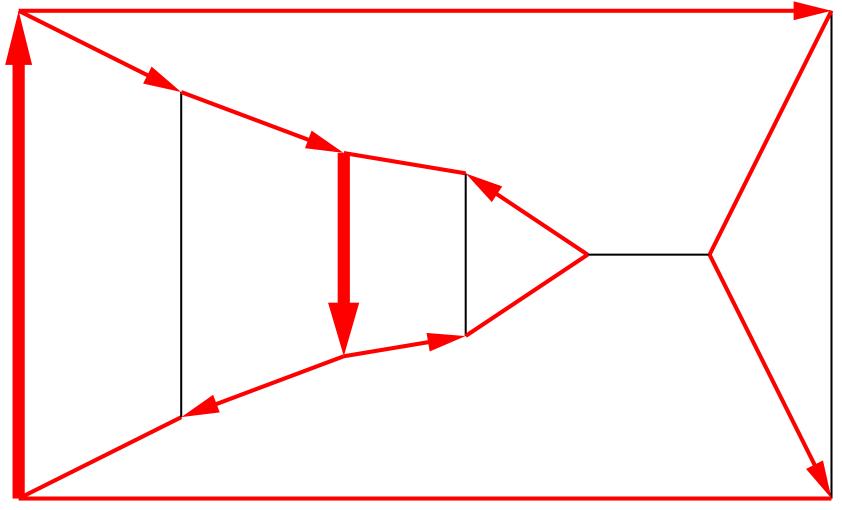
Continue it left–right alternatively



... until we come back.

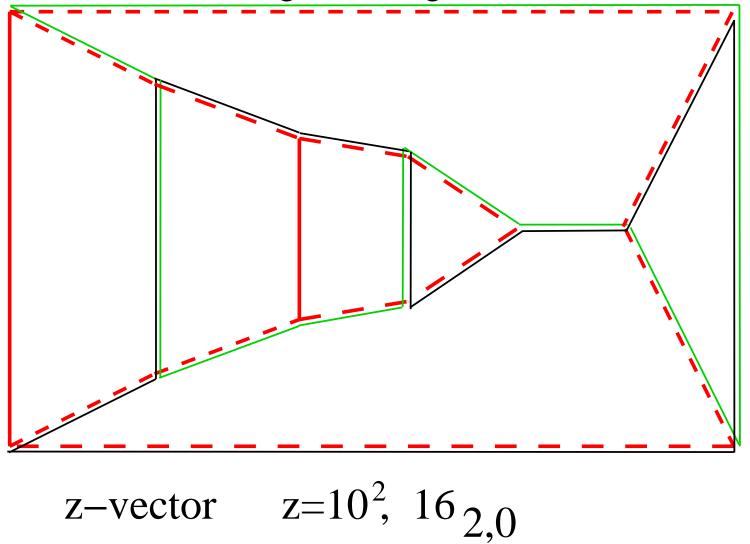


A self-intersecting zigzag



Zigzags

A double covering of 18 edges: 10+10+16

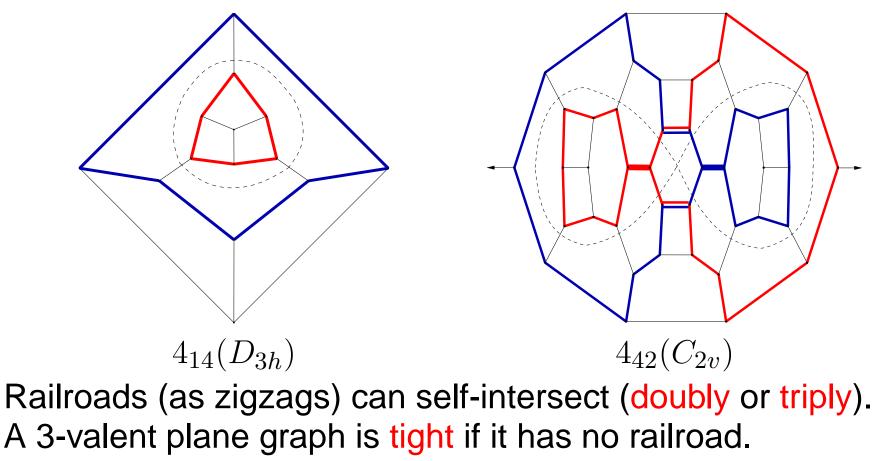


z-knotted fullerenes

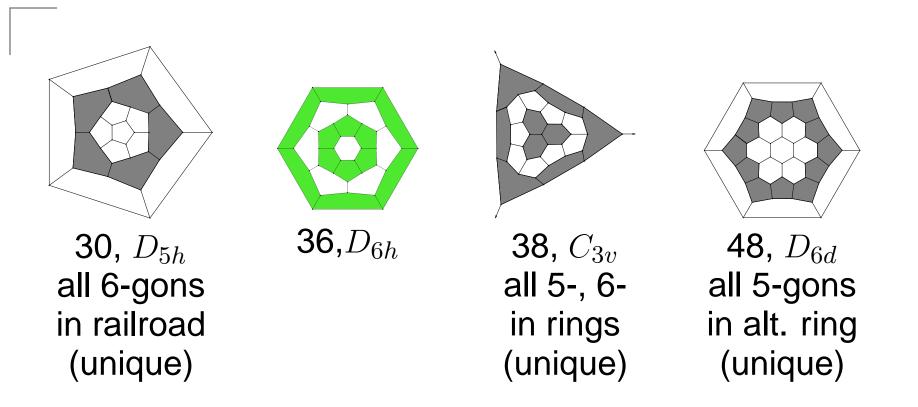
- A zigzag in a 3-valent plane graph G is a circuit such that any 2, but not 3 edges belong to the same face.
- Zigzags can self-intersect in the same or opposite direction.
- Zigzags doubly cover edge-set of G.
- A graph is z-knotted if there is unique zigzag.
- What is proportion of z-knotted fullerenes among all F_n ?
 Schaeffer and Zinn-Justin, 2004, implies: for any m,
 the proportion, among 3-valent n-vertex plane graphs
 of those having ≤ m zigzags goes to 0 with $n \to \infty$.
- Conjecture: all z-knotted fullerenes are chiral and their symmetries are all possible (among 28 groups for them) pure rotation groups: C₁, C₂, C₃, D₃, D₅.

Railroads

A railroad in a 3-valent plane graph is a circuit of hexagonal faces, such that any of them is adjacent to its neighbors on opposite faces. Any railroad is bordered by two zigzags.



Some special fullerenes

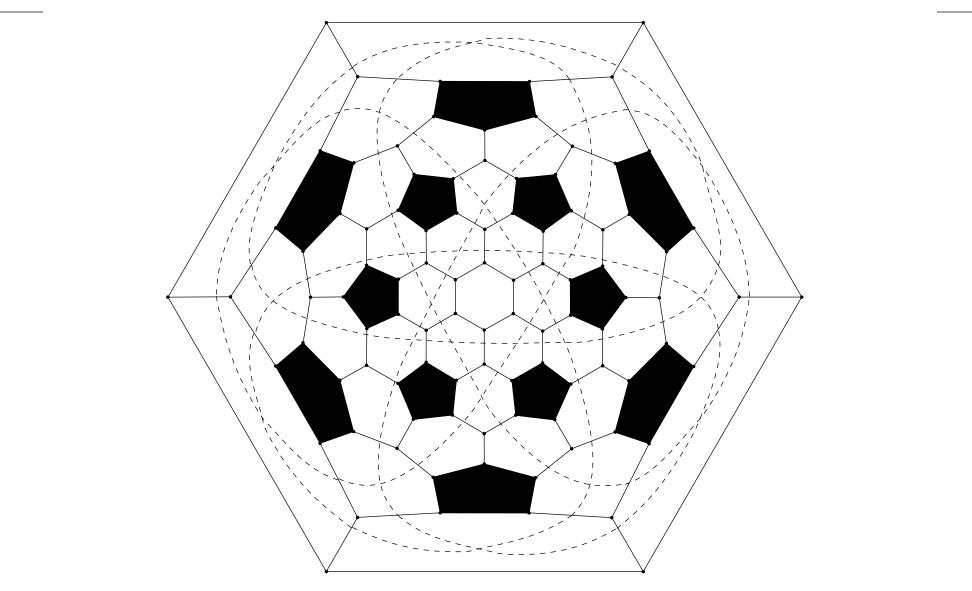


2nd one is the case t = 1 of infinite series $F_{24+12t}(D_{6d,h})$, which are only ones with 5-gons organized in two 6-rings.

It forms, with F_{20} and F_{24} , best known space fullerene tiling.

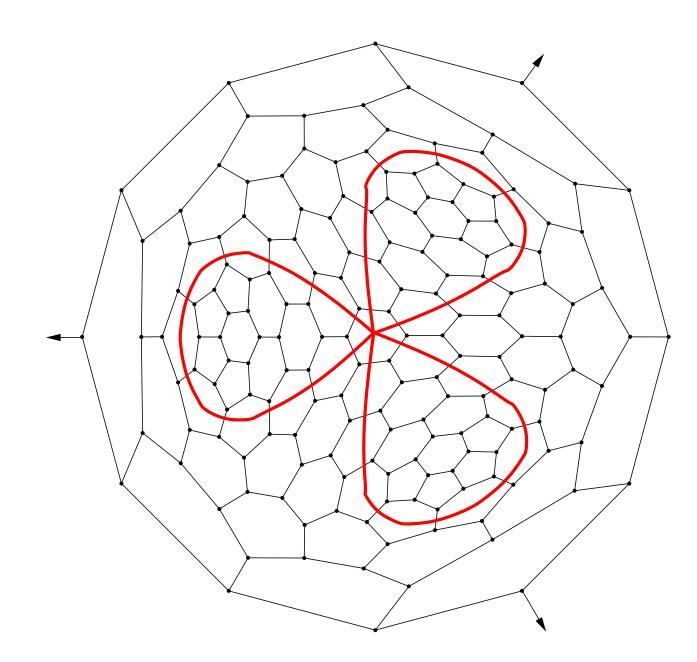
The skeleton of its dual is an isometric subgraph of $\frac{1}{2}H_8$.

First IPR fullerene with self-int. railroad



 $F_{96}(D_{6d})$ realizes projection of Conway knot $(4 \times 6)^*$

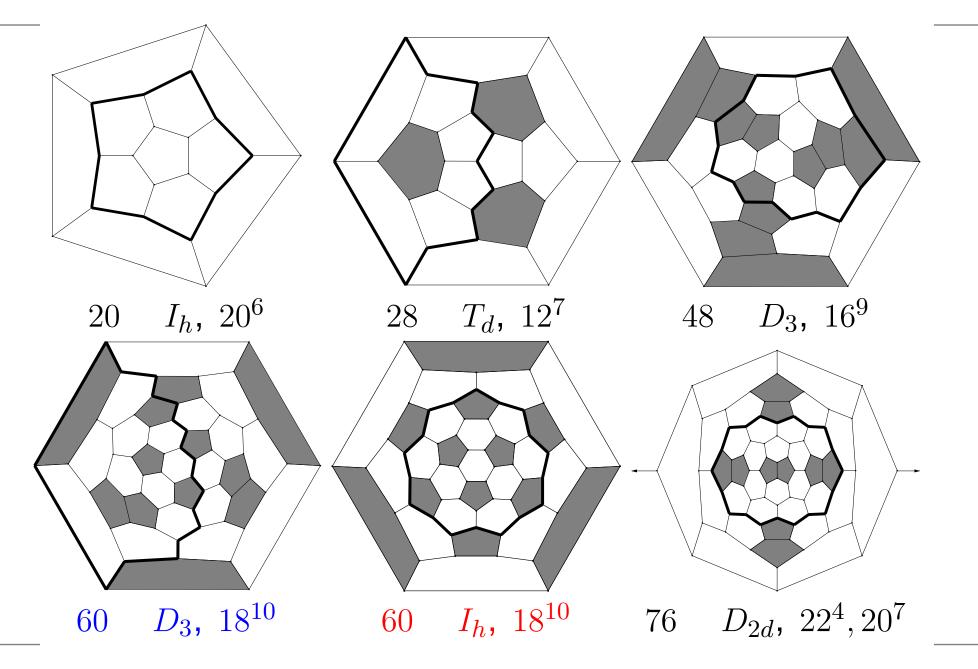
Triply intersecting railroad in $F_{172}(C_{3v})$



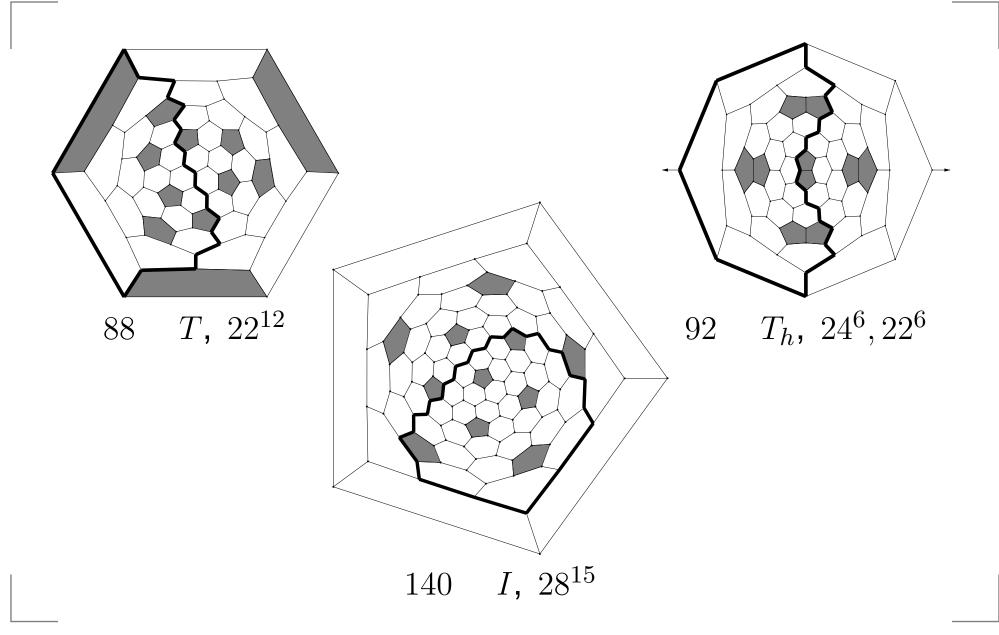
Tight fullerenes

- Tight fullerene is one without railroads, i.e., pairs of "parallel" zigzags.
- Clearly, any z-knotted fullerene (unique zigzag) is tight.
- $F_{140}(I)$ is tight with $z = 28^{15}$ (15 simple zigzags).
- **Solution** Conjecture: any tight fullerene has ≤ 15 zigzags.
- Conjecture: All tight with simple zigzags are 9 known ones (holds for all F_n with $n \le 200$).

Tight F_n with simple zigzags



Tight F_n with simple zigzags

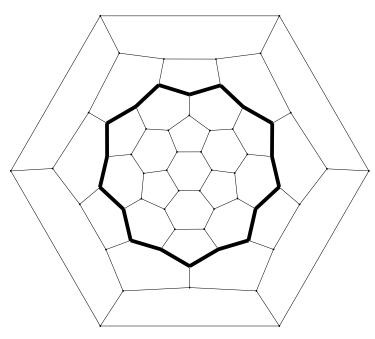


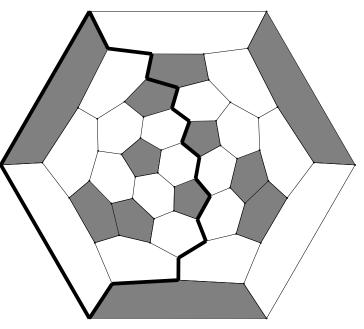
Tight F_n with only simple zigzags

n	group	<i>z</i> -vector	orbit lengths	int. vector
20	I_h	10^{6}	6	2^5
28	T_d	12^{7}	3,4	2^6
48	D_3	16^{9}	3,3,3	2^8
60, IPR	I_h	18^{10}	10	2^9
60	D_3	18^{10}	1,3,6	2^9
76	D_{2d}	$22^4, 20^7$	1,2,4,4	$4,2^9$ and 2^{10}
88, IPR	T	22^{12}	12	2^{11}
92	T_h	$22^6, 24^6$	6,6	2^{11} and $2^{10},4$
140, IPR	Ι	28^{15}	15	2^{14}

Conjecture: this list is complete (checked for $n \le 200$). It gives 7 Grünbaum arrangements of plane curves.

Two F_{60} with *z*-vector 18^{10}





 $C_{60}(I_h)$

 $F_{60}(D_3)$

This pair was first answer on a question in B.Grunbaum "Convex Polytopes" (Wiley, New York, 1967) about non-existance of simple polyhedra with the same *p*-vector but different zigzags.

z-uniform F_n with $n \leq 60$

n	isomer	orbit lengths	z-vector	int. vector
20	<i>I_h</i> :1	6	10^{6}	2^{5}
28	<i>T</i> _d :2	4,3	12^{7}	2^{6}
40	<i>T</i> _{<i>d</i>} :40	4	$30^4_{0,3}$	8^3
44	T: 73	3	$44^{3}_{0,4}$	18^{2}
44	D ₂ :83	2	$66^2_{5,10}$	36
48	C ₂ :84	2	$72^2_{7,9}$	40
48	D ₃ :188	3,3,3	16^{9}	2^{8}
52	C ₃ :237	3	$52^{3}_{2,4}$	20^{2}
52	<i>T</i> :437	3	$52^{3}_{0,8}$	18^{2}
56	<i>C</i> ₂ :293	2	$84_{7,13}^2$	44
56	C ₂ :349	2	$84_{5,13}^2$	48
56	C ₃ :393	3	$56^3_{3,5}$	20^{2}
60	<i>C</i> ₂ :1193	2	$90^2_{7,13}$	50
60	<i>D</i> ₂ :1197	2	$90^2_{13,8}$	48
60	<i>D</i> ₃ :1803	6,3,1	18 ¹⁰	2^{9}
60	<i>I_h</i> :1812	10	18^{10}	2^{9}

z-uniform IPR C_n with $n \leq 100$

n	isomer	orbit lengths	<i>z</i> -vector	int. vector
80	<i>I_h</i> :7	12	20^{12}	$0,2^{10}$
84	<i>T</i> _{<i>d</i>} :20	6	$42^{6}_{0,1}$	8^5
84	D _{2d} :23	4,2	$42_{0,1}^{6}$	8^5
86	D ₃ :19	3	$86^3_{1,10}$	32^{2}
88	<i>T</i> :34	12	22^{12}	2^{11}
92	<i>T</i> :86	6	$46_{0,3}^{6}$	8^5
94	C ₃ :110	3	$94^{3}_{2,13}$	32^{2}
100	C ₂ :387	2	$150^2_{13,22}$	80
100	D ₂ :438	2	$150^2_{15,20}$	80
100	D ₂ :432	2	$150^2_{17,16}$	84
100	<i>D</i> ₂ :445	2	$150^2_{17,16}$	84

IPR means the absence of adjacent pentagonal faces; **IPR** enhanced stability of putative fullerene molecule.

IPR *z***-knotted** F_n with $n \leq 100$

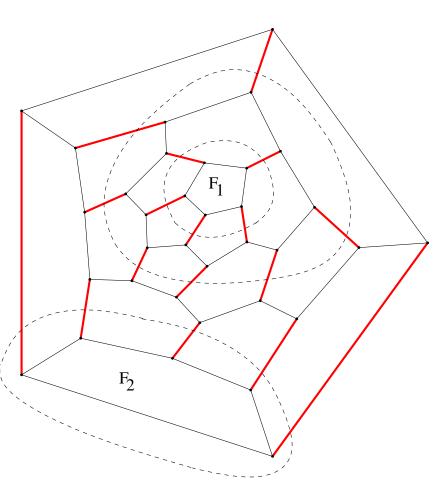
n	signature	isomers	98	49,98 *	<i>C</i> ₂ :191, 194, 196
86	43,86*	$C_2:2$		63, 84	$C_1:49$
90	47,88	C_1 :7		75,72	$C_1:29$
	53, 82	C_2 :19		77,70	$C_1:5; C_2:221$
	71, 64	$C_2:6$	100	51,99	<i>C</i> ₁ :371, 377; <i>C</i> ₃ :221
94	$47,94^{*}$	C_1 :60; C_2 :26, 126		53,97	C_1 :29, 113, 236
	65,76	$C_2:121$		55,95	$C_1:165$
	69,72	C_2 :7		57, 93	$C_1:21$
96	49,95	$C_1:65$		61, 89	$C_1:225$
	53,91	C_1 :7, 37, 63		65, 85	C_1 :31, 234

The symbol * above means that fullerene forms a perfect matching of the fullerene skeleton, i.e., edges of self-intersection of type I cover exactly once its vertex-set. All, except $F_{100}(C_3)$ above, have symmetry C_1, C_2 .

Perfect matching on fullerenes

Let G be a fullerene with one zigzag with self-intersection numbers (α_1, α_2) . Here is the smallest one, $F_{34}(C_2)$. $\rightarrow \rightarrow$

- (i) $\alpha_1 \geq \frac{n}{2}$. If $\alpha_1 = \frac{n}{2}$ then the edges of self-intersection of type I form a perfect matching PM
- (ii) every face incident to 0 or 2 edges of PM
- (iii) two faces, F_1 and F_2 are free of PM, PM is organized around them in concentric circles.

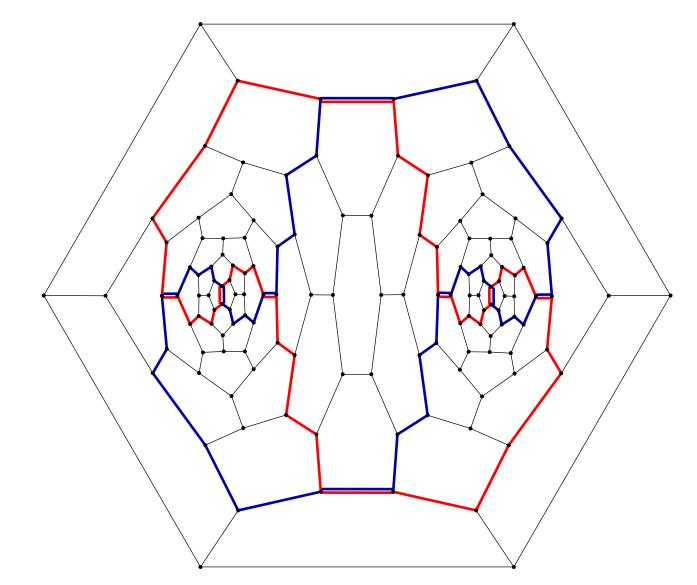


z-knotted fullerenes: statistics for $n \leq 74$

n	# of F_n	# of z-knotted	54	580	93
34	6	1	56	924	87
36	15	0	58	1205	186
38	17	4	60	1812	206
40	40	1	62	2385	341
42	45	6	64	3465	437
44	89	9	66	4478	567
46	116	15	68	6332	894
48	199	23	70	8149	1048
50	271	30	72	11190	1613
52	437	42	74	14246	1970

Proportion of z-knotted ones among all F_n looks stable. For z-knotted among 3-valent $\leq n$ -vertex plane graphs, it is 34% if n = 24 (99% of them are C_1) but goes to 0 if $n \to \infty$.

Intersection of zigzags



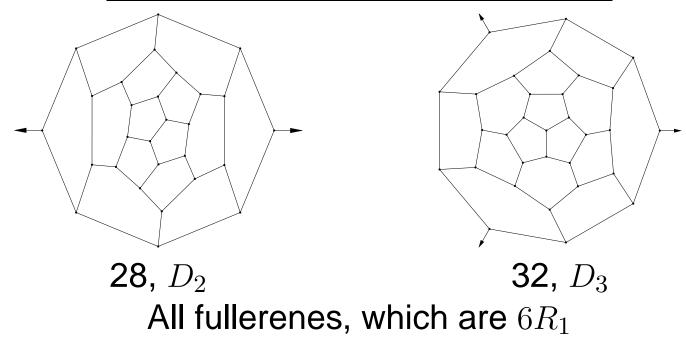
For any *n*, there is a fullerene F_{36n-8} with two simple zigzags having intersection 2n; above n = 4.

Face-regular fullerenes

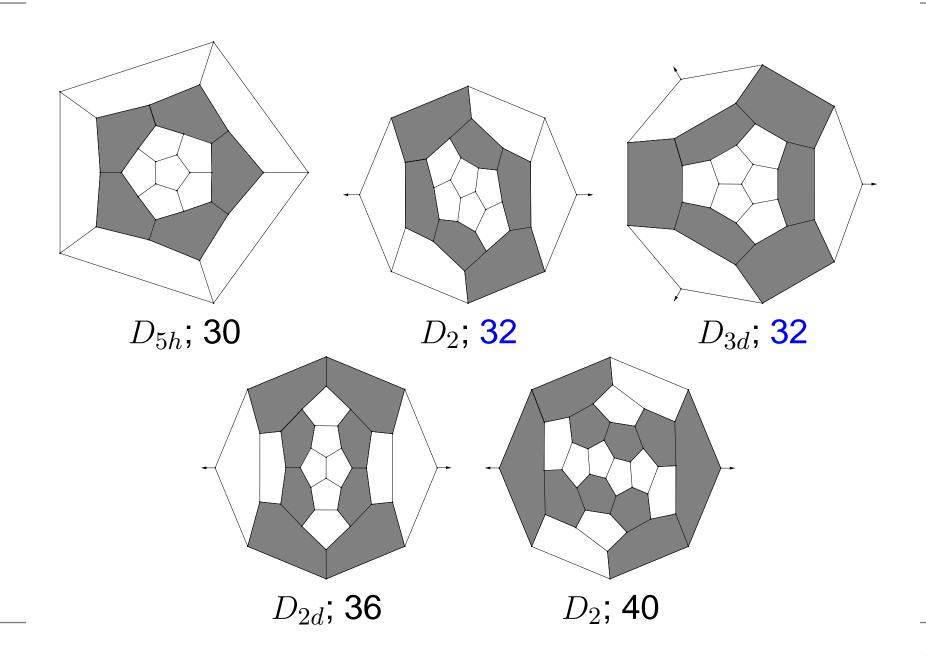
Face-regular fullerenes

A fullerene called $5R_i$ if every 5-gon has *i* exactly 5-gonal neighbors; it is called $6R_i$ if every 6-gon has exactly *i* 6-gonal neigbors.

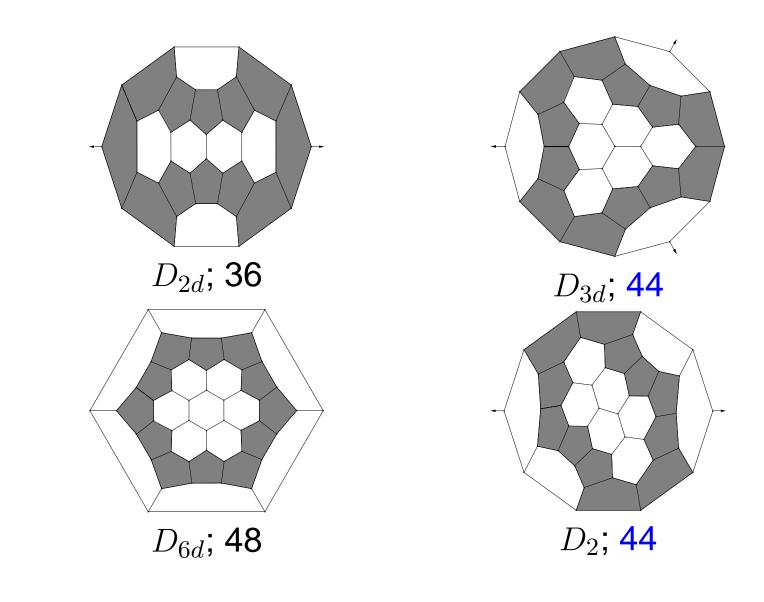
i	0	1	2	3	4	5
# of $5R_i$	∞	∞	∞	2	1	1
# of $6R_i$	4	2	8	5	7	1



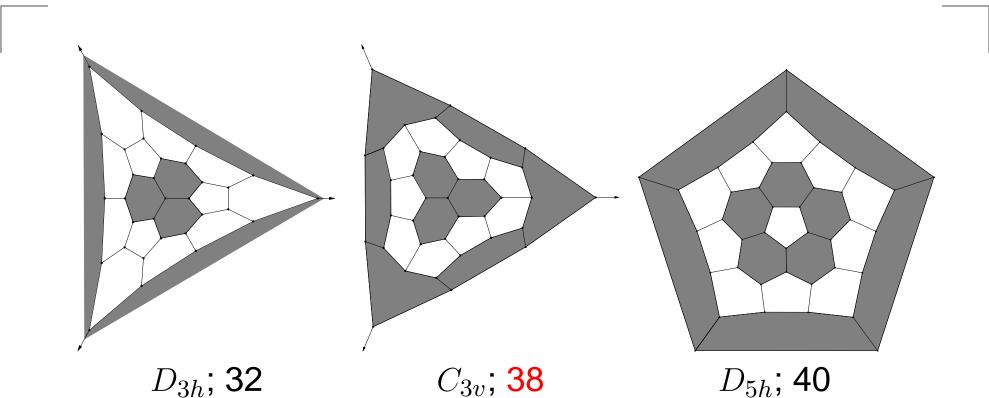
Fullerenes $6R_2$ with hexagons in 1 ring



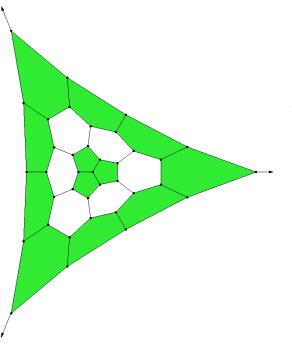
Fullerenes $5R_2$ with pentagons in 1 ring



Fullerenes $6R_2$ with hexagons in > 1 ring

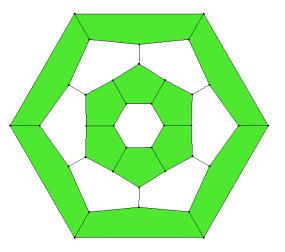


Fullerenes $5R_2$ with pentagons in > 1 ring



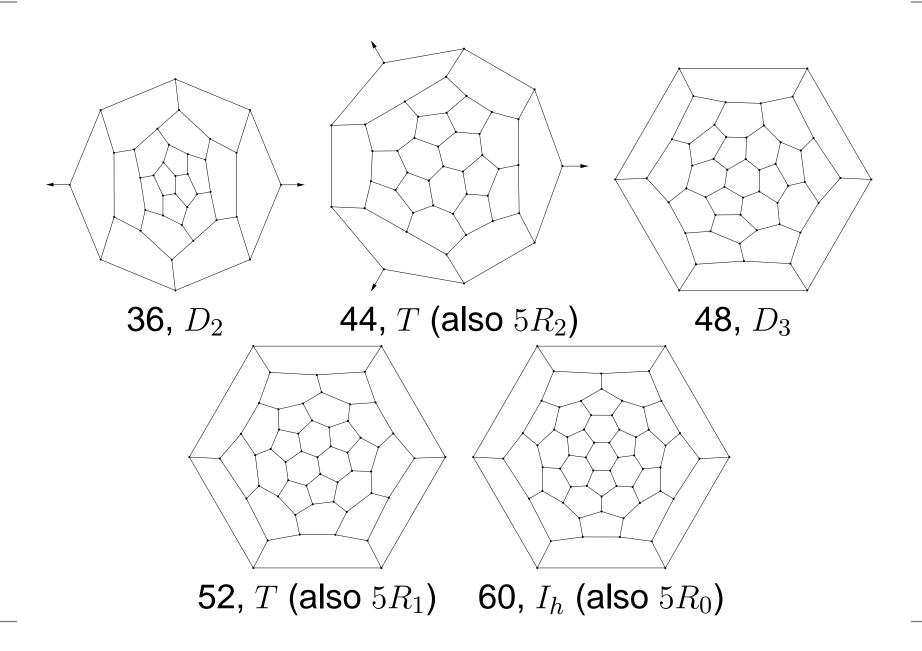
*C*_{3*v*}; 38

infinite family: 4 triples in F_{4t} , $t \ge 10$, from collapsed 3_{4t+8}

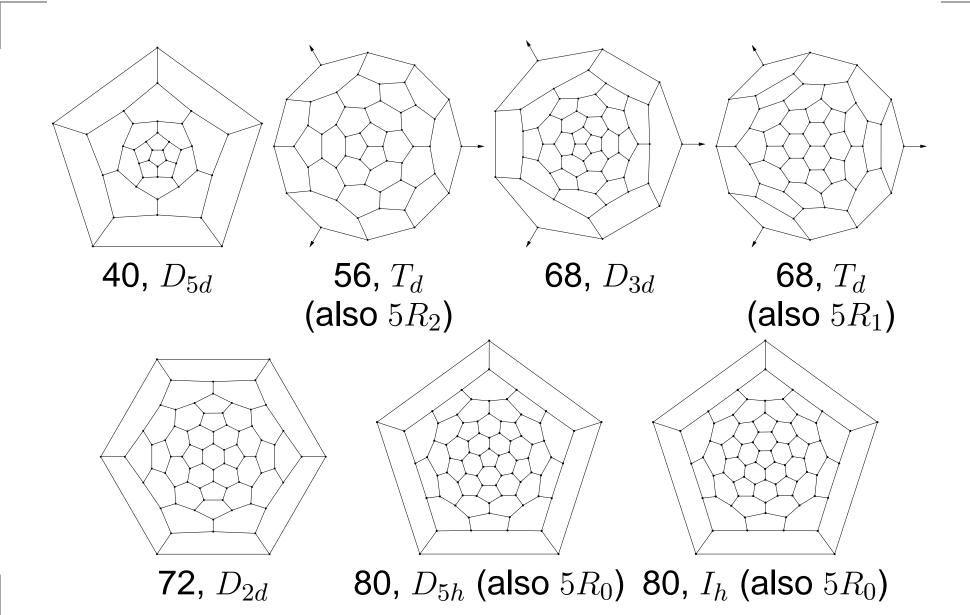


infinite family: $F_{24+12t}(D_{6d}),$ $t \ge 1,$ D_{6h} if t odd elongations of hexagonal barrel

All fullerenes, which are $6R_3$



All fullerenes, which are $6R_4$



Embedding of fullerenes

Sullerenes as isom. subgraphs of half-cube

■ All isometric embeddings of skeletons (with $(5R_i, 6R_j)$ of F_n), for I_h - or I-fullerenes or their duals, are:

 $F_{20}(I_h)(5,0) \to \frac{1}{2}H_{10} \quad F_{20}^*(I_h)(5,0) \to \frac{1}{2}H_6$ $F_{60}^*(I_h)(0,3) \to \frac{1}{2}H_{10} \quad F_{80}(I_h)(0,4) \to \frac{1}{2}H_{22}$

• (Shpectorov-Marcusani, 2007: all others isometric F_n are 3 below (and number of isometric F_n^* is finite):

$$F_{26}(D_{3h})(-,0) \to \frac{1}{2}H_{12}$$

$$F_{40}(T_d)(2,-) \to \frac{1}{2}H_{15} \qquad F_{44}(T)(2,3) \to \frac{1}{2}H_{16}$$

$$F_{28}^*(T_d)(3,0) \to \frac{1}{2}H_7 \qquad F_{36}^*(D_{6h})(2,-) \to \frac{1}{2}H_8$$

▲ Also, for graphite lattice (infinite fullerene), it holds: $(6^3) = F_{\infty}(0,6) \rightarrow H_{\infty}, Z_3 \text{ and } (3^6) = F_{\infty}^*(0,6) \rightarrow \frac{1}{2}H_{\infty}, \frac{1}{2}Z_3.$

Embeddable dual fullerenes in cells

The five above embeddable dual fullerenes F_n^* correspond exactly to five special (Katsura's "most uniform") partitions $(5^3, 5^2.6, 5.6^2, 6^3)$ of *n* vertices of F_n into 4 *types* by 3 gonalities (5- and 6-gonal) faces incident to each vertex.

▶ $F_{20}^*(I_h) \to \frac{1}{2}H_6$ corresponds to (20, -, -, -)

- ▶ $F_{28}^*(T_d) \to \frac{1}{2}H_7$ corresponds to (4, 24, -, -)
- ▶ $F_{36}^*(D_{6h}) \to \frac{1}{2}H_8$ corresponds to (-, 24, 12, -)
- $F_{60}^*(I_h) \to \frac{1}{2}H_{10}$ corresponds to (-, -, 60, -)

• $F_{\infty}^* \to \frac{1}{2}H_{\infty}$ corresponds to $(-, -, -, \infty)$

It turns out, that exactly above 5 fullerenes were identified as clatrin coated vesicles of eukaryote cells (the vitrified cell structures found during cryo-electronic microscopy).