Goldberg-Coxeter construction

for 3- or 4-valent plane graphs

Michel Deza

Ecole Normale Superieure, Paris

Mathieu Dutour Sikiric

Rudjer Boskovic Institute, Zagreb, and ISM, Tokyo

1,1

Mathematics: construction of planar graphs

M. Goldberg, *A class of multisymmetric polyhedra*, Tohoku Math. Journal, **43** (1937) 104–108.

Objective was to maximize the interior volume of the polytope, i.e. to find 3-dimensional analogs of regular polygons.

search of equidistributed systems of points on the sphere for application to Numerical Analysis.

Biology: explanation of structure of icosahedral viruses
D.Caspar and A.Klug, *Physical Principles in the Construction of Regular Viruses*, Cold Spring Harbor Symp. Quant. Biol., 27 (1962) 1-24.

(k,l)	symmetry	capsid of virion
(1,0)	I_h	gemini virus
(2,0)	I_h	hepathite B
(2, 1)	I, laevo	HK97, rabbit papilloma virus
(3,1)	I, laevo	rotavirus
(4, 0)	I_h	herpes virus, varicella
(5,0)	I_h	adenovirus
(6,3)?	I, laevo	HIV-1

Architecture: construction of geodesic domes Patent by Buckminster Fuller

EPCOT in Disneyland.

Mathematics:

H.S.M. Coxeter, *Virus macromolecules and geodesic domes*, in *A spectrum of mathematics*; ed. by J.C.Butcher, Oxford University Press/Auckland University Press: Oxford, U.K./Auckland New-Zealand, (1971) 98–107.

Chemistry: Buckminsterfullerene C_{60} (football, Truncated Icosahedron)

Kroto, Kurl, Smalley (Nobel prize 1996) synthetized in 1985 a new molecule, whose graph is $GC_{1,1}(Dodecahedron)$.

Osawa constructed theoretically C_{60} in 1984.

I. ZigZags and

central circuits

A 4-valent plane graph G

Take an edge of G

Continue it straight ahead ...

... until the end

A self-intersecting central circuit

A partition of edges of G

Zig Zags

A plane graph G

Zig Zags

take two edges

Zig Zags

Continue it left–right alternatively

Zig Zags

... until we come back.

Zig Zags

A self-intersecting zigzag

Zig Zags

A double covering of 18 edges: 10+10+16

Notations

ZC-circuit stands for "zigzag or central circuit" in 3- or 4-valent plane graphs.

The length of a ZC-circuit is the number of its edges.

• The ZC-vector of a 3- or 4-valent plane graph G_0 is the vector $\ldots, c_k^{m_k}, \ldots$ where m_k is the number of ZC-circuits of length c_k .

I. Goldberg-Coxeter construction

The construction

- Take a 3- or 4-valent plane graph G_0 . The graph G_0^* is formed of triangles or squares.
- Break the triangles or squares into pieces:

- Glue the pieces together in a coherent way.
- We obtain another triangulation or quadrangulation of the plane.

- Glue the pieces together in a coherent way.
- We obtain another triangulation or quadrangulation of the plane.

(3, 0): 4-valent

- Glue the pieces together in a coherent way.
- We obtain another triangulation or quadrangulation of the plane.

- Glue the pieces together in a coherent way.
- We obtain another triangulation or quadrangulation of the plane.

Final steps

- Go to the dual and obtain a 3- or 4-valent plane graph, which is denoted GC_{k,l}(G₀) and called "Goldberg-Coxeter construction".
- The construction works for any 3- or 4-valent map on oriented surface.

Operation $GC_{2,0}$

Example of $GC_{3,2}(Octahedron)$

Example of $GC_{3,2}(Octahedron)$

Properties

- One associates $z = k + le^{i\frac{\pi}{3}}$ (Eisenstein integer) or z = k + li (Gaussian integer) to the pair (k, l) in 3- or 4-valent case.
- If one writes $GC_z(G_0)$ instead of $GC_{k,l}(G_0)$, then one has:

 $GC_z(GC_{z'}(G_0)) = GC_{zz'}(G_0)$

• If G_0 has n vertices, then $GC_{k,l}(G_0)$ has

$$n(k^2 + kl + l^2) = n|z|^2$$
 vertices if G_0 is 3-valent,
 $n(k^2 + l^2) = n|z|^2$ vertices if G_0 is 4-valent.

- If G_0 has a plane of symmetry, we reduce to $0 \le l \le k$.
- $GC_{k,l}(G_0)$ has all rotational symmetries of G_0 and all symmetries if l = 0 or l = k.

The case (k, l) = (1, 1)

Case 3-valent

Case 4-valent

The case (k, l) = (1, 1)

Case 4-valent

The case (k, l) = (1, 1)

Case 3-valent $GC_{1,1}$ is called leapfrog (=Truncation of the dual)

Case 4-valent $GC_{1,1}$ is called medial

Goldberg Theorem

- q_n is the class of 3-valent plane graphs having only q-and 6-gonal faces.
- The class of 4-valent plane graphs having only 3- and 4-gonal faces is called Octahedrites.

Class		Groups	Construction
3_n	$p_3 = 4$	T , T_d	$GC_{k,l}$ (Tetrahedron)
4_n	$p_4 = 6$	O , O_h	$GC_{k,l}(Cube)$
4_n	$p_4 = 6$	D_{6}, D_{6h}	$GC_{k,l}(Prism_6)$
5_n	$p_5 = 12$	I, I_h	$GC_{k,l}(Dodecahedron)$
Octahedrites	$p_3 = 8$	O, O_h	$GC_{k,l}(Octahedron)$

The special case $GC_{k,0}$

- Any ZC-circuit of G_0 corresponds to k ZC-circuits of $GC_{k,0}(G_0)$ with length multiplied by k.
- If the ZC-vector of G_0 is $\ldots, c_l^{m_l}, \ldots$, then the ZC-vector of $GC_{k,0}(G_0)$ is $\ldots, (kc_l)^{km_l}, \ldots$.

The special case $GC_{k,0}$

- Any ZC-circuit of G_0 corresponds to k ZC-circuits of $GC_{k,0}(G_0)$ with length multiplied by k.
- If the ZC-vector of G_0 is $\ldots, c_l^{m_l}, \ldots$, then the ZC-vector of $GC_{k,0}(G_0)$ is $\ldots, (kc_l)^{km_l}, \ldots$.

The special case $GC_{k,0}$

- Any ZC-circuit of G_0 corresponds to k ZC-circuits of $GC_{k,0}(G_0)$ with length multiplied by k.
- If the ZC-vector of G_0 is $\ldots, c_l^{m_l}, \ldots$, then the ZC-vector of $GC_{k,0}(G_0)$ is $\ldots, (kc_l)^{km_l}, \ldots$.

III. The (k, l)-product

The mapping $\phi_{k,l}$

We always assume gcd(k, l) = 1

$$\begin{cases} \phi_{k,l} : \{1, \dots, k+l\} \rightarrow \{1, \dots, k+l\} \\ u \mapsto \begin{cases} u+l & \text{if } u \in \{1, \dots, k\} \\ u-k & \text{if } u \in \{k+1, \dots, k+l\} \end{cases} \end{cases}$$

is bijective and periodic with period k + l.

Example: Case k = 5, l = 2:

 $\phi^{(s)}(1) = 1, 3, 5, 7, 2, 4, 6, 1, \dots$ operations: (+2), (+2), (+2), (-5), (+2), (+2), (-5)

The (k, l)-product

• Definition 1 (The (k, l)-product) If L and R are two elements of a group, $k, l \ge 0$ and gcd(k, l) = 1; we define (p_0, \ldots, p_{k+l}) by $p_0 = 1$ and $p_i = \phi_{k,l}(p_{i-1})$. Set $S_i = L$ if $p_i - p_{i-1} = l$ and $S_i = R$ if $p_i - p_{i-1} = -k$; then set

$$L \odot_{k,l} R = S_{k+l} \dots S_2 \cdot S_1.$$

By convention, set $L \odot_{1,0} R = L$ and $L \odot_{0,1} R = R$. For k = 5, l = 2, one gets the expression

$$L \odot_{5,2} R = RLLRLLL$$

A similar notion is introduced by Norton (1987) in "Generalized Moonshine" for the Monster group.

Properties

- If L and R commute, $L \odot_{k,l} R = L^k R^l$
- Euclidean algorithm formula

$$\begin{cases} L \odot_{k,l} R = L \odot_{k-ql, l} RL^{q} & \text{if } k-ql \ge 0 \\ L \odot_{k,l} R = R^{q}L \odot_{k, l-qk} R & \text{if } l-qk \ge 0 \end{cases}$$

If L and R do not commute, then $L \odot_{k,l} R \neq Id$.

IV. ZC-circuits in

 $GC_{k,l}(G_0)$

– p. 22/4

Iteration

- "Position mapping" is denoted $PM(\overrightarrow{e}, p) = (\overrightarrow{f}_1, \phi_{k,l}(p))$ or $(\overrightarrow{f}_2, \phi_{k,l}(p))$
- PM^{k+l}(\overrightarrow{e} , 1)=(\overrightarrow{e}' , 1). So, one defines "Iterated position mapping" as IPM(\overrightarrow{e}) = \overrightarrow{e}' .
- \mathcal{DE} is the set of directed edges of G_0^* . IPM is a permutation of \mathcal{DE} .
- For every ZC-circuit with pair $(\vec{e}, 1)$ denote Ord(ZC) the smallest s > 0, such that $IPM^{s}(\vec{e}) = \vec{e}$.
- For any ZC-circuit of $GC_{k,l}(G_0)$ one has: $length(ZC)=2(k^2+kl+l^2)Ord(ZC)$ 3-valent case $length(ZC)=(k^2+l^2)Ord(ZC)$ 4-valent case The [ZC]-vector of $GC_{k,l}(G_0)$ is the vector $\ldots, c_k^{m_k}, \ldots$ where m_k is the number of ZC-circuits with order c_k .

• L and R are the following permutation of \mathcal{DE}

$$L: \overrightarrow{e} \to \overrightarrow{f}_1 \qquad \qquad R: \overrightarrow{e} \to \overrightarrow{f}_2$$

with \overrightarrow{f}_1 and \overrightarrow{f}_2 being the first and second choice. Example of Cube

Moving group and Key Theorem

- $Mov(G_0) = \langle L, R \rangle$ is the moving group In Cube: a subgroup of Sym(24).
- For $u \in Mov(G_0)$, denote ZC(u) the vector $\ldots, c_k^{m_k}, \ldots$ with multiplicities m_k being the half of the number of cycles of length c_k in the permutation u acting on the set \mathcal{DE} . In Cube: $ZC(L) = ZC(R) = 3^4$
- Key Theorem One has for all 3- or 4-valent plane graphs G_0 and all k, l > 0

 $[ZC] - vector \text{ of } GC_{k,l}(G_0) = ZC(L \odot_{k,l} R)$

Solution of the Cube case

▶ L and R do not commute \blacksquare $L \odot_{k,l} R \neq Id$.

$$Mov(Cube) = \langle L, R \rangle = Alt(4)$$

• $K = \langle (1,2)(3,4), (1,3)(2,4) \rangle$ normal subgroup of index 3 of Alt(4). \overline{L} is of order 3.

$$\begin{cases} \overline{L} \odot_{k,l} \overline{R} = \overline{L}^k \overline{R}^l = \overline{L}^{k-l} \\ L \odot_{k,l} R \in K \Leftrightarrow k-l \text{ divisible by } 3 \end{cases}$$

- Elements of Alt(4) K have order 3. Elements of $K \{Id\}$ have order 2.
- → $GC_{k,l}$ (Cube) has [ZC]=2⁶ if $k \equiv l \pmod{3}$ and [ZC]=3⁴, otherwise

Possible [ZC]-vectors

- Denote $\mathcal{P}(G_0)$ the set of all pairs (g_1, g_2) with $g_i \in Mov(G_0)$.
- Denote $U_{L,R}$ the smallest subset of $\mathcal{P}(G_0)$, which contains the pair (L, R) and is stable by the two operations

$$(x,y)\mapsto (x,yx)$$
 and $(x,y)\mapsto (yx,y)$

- Theorem: The set of possible [ZC]-vectors of $GC_{k,l}(G_0)$ is equal to the set of all vectors ZC(v), ZC(w) with $(v,w) \in U_{L,R}$.
- Computable in finite time for a given G_0 .

Examples

- Mov(Dodecahedron) = Alt(5) of order 60. Order of elements different from Id are 2, 3 or 5.
 Possible [ZC] are 2¹⁵ or 3¹⁰ or 5⁶.
- $Mov(Klein Map) = PSL_{F_7}(2)$ of order 168. Order of elements different from Id are 2, 3, 4 or 7. Possible [ZC] are 3^{28} or 4^{21} .
- Mov(Truncated Icosidodecahedron) has size 139968000000

$2^{30}, 3^{40}$	$2^{30}, 5^{24}$	$3^{20}, 5^{24}$
$2^{60}, 3^{20}$	$2^{60}, 5^{12}$	$3^{40}, 5^{12}$
2^{90}	3^{60}	5^{36}
9^{20}	6^{30}	15^{12}

V. $SL_2(\mathbb{Z})$ action

$SL_2(\mathbb{Z})$ action?

 $\mathcal{P}(G_0)$ is the set of pairs (g_1, g_2) . One has

 $L \odot_{k,l} R = L \odot_{k-l,l} RL$ and $L \odot_{k,l} R = RL \odot_{k,l-k} R$

The matrices $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ generate $SL_2(\mathbb{Z})$. We want to define ϕ , such that

(i) ϕ is a group action of $SL_2(\mathbb{Z})$ on $\mathcal{P}(G_0)$

(ii) If $M \in SL_2(\mathbb{Z})$, then the mapping $\phi(M) : \mathcal{P}(G_0) \to \mathcal{P}(G_0)$ satisfies

 $\phi(M)(g_1, g_2) = (h_1, h_2) \Rightarrow g_1 \odot_{(k,l)M} g_2 = h_1 \odot_{k,l} h_2$

This is in fact not possible!

 $SL_2(\mathbb{Z})$ action

● $SL_2(\mathbb{Z})$ is generated by matrices

$$T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } U = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

all relations between T and U are generated by the relations

$$T^4 = I_2, \quad U^3 = I_2 \text{ and } T^2 U = UT^2$$

We write

$$\phi(T)(g_1, g_2) = (g_2, g_2 g_1^{-1} g_2^{-1})
\phi(U)(g_1, g_2) = (g_2, g_2 g_1^{-1} g_2^{-2})$$

$SL_2(\mathbb{Z})$ action (continued)

By computation

$$\phi(T)^4(g_1, g_2) = \phi(U)^3(g_1, g_2) = Int_{g_1g_2^{-1}g_1^{-1}g_2}(g_1, g_2),$$

$$\phi(T)^2\phi(U)(g_1, g_2) = \phi(U)\phi(T)^2(g_1, g_2).$$

- Group action of $SL_2(\mathbb{Z})$ on $\mathcal{P}(G_0)/D(Mov(G_0))$.
- If *M* preserve the element (L, R) in $\mathcal{P}(G_0)/D(Mov(G_0))$, then for all pairs (k, l):

$$GC_{k,l}(G_0)$$
 and $GC_{(k,l)M}(G_0)$

have the same [ZC]-vector. This define a

finite index subgroup of $SL_2(\mathbb{Z})$

Conjectured generators

Graph G ₀	Generators of $Stab(G_0)$		
Dodecahedron	$\left(\begin{array}{rrr}1 & -1\\1 & 0\end{array}\right), \left(\begin{array}{rrr}-4 & -3\\3 & 2\end{array}\right), \left(\begin{array}{rrr}-4 & -1\\1 & 0\end{array}\right)$		
Cube	$\left(\begin{array}{ccc} -1 & 1 \\ -1 & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & -1 \\ 1 & 2 \end{array}\right)$		
Octahedron	$\left(\begin{array}{rrr} 0 & -1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rrr} -4 & -3 \\ 3 & 2 \end{array}\right), \left(\begin{array}{rrr} -4 & -1 \\ 1 & 0 \end{array}\right)$		

VI. Remarks
$Rot(G_0)$ transitive

 \mathcal{DE} is the set of all directed edges of G_0 .

- ▶ $Rot(G_0)$: all rotations in automorphism group $Aut(G_0)$.
 - its action on \mathcal{DE} is free.
 - action of $Rot(G_0)$ and $Mov(G_0)$ on \mathcal{DE} commute.
- If $Rot(G_0)$ is transitive on \mathcal{DE} , then its action on ZC-circuit is transitive too and

$$\begin{cases} \phi_{\overrightarrow{e}} : Mov(G_0) \to Rot(G_0) \\ u \mapsto \phi_{\overrightarrow{e}}(u) \end{cases}$$

defined by $u^{-1}(\overrightarrow{e}) = \phi_{\overrightarrow{e}}(u)(\overrightarrow{e})$, is an injective group morphism. $\phi_{\overrightarrow{e}}(Mov(G_0))$ is normal in $Rot(G_0)$.

Extremal cases

- $Rot(G_0)$ non-trivial \Rightarrow restrictions on $Mov(G_0)$.
- $Rot(G_0)$ transitive on $\mathcal{DE} \Rightarrow |Mov(G_0)|=3n$ (3-valent case) or = 4n (4-valent case).
- Mov(G_0) is formed of even permutation on 3n or 4n directed edges.
- In some cases $Mov(G_0) = Alt(3n)$.

• We have no example of 4-valent plane graph G_0 with $Mov(G_0) = Alt(4n)$.

$Mov(G_0)$ commutative

- $Mov(G_0)$ commutative $\Leftrightarrow G_0$ is either a graph 2_n , a graph 3_n or a 4-hedrite.
- Class 2_n (Grunbaum-Zaks): Goldberg-Coxeter of the Bundle

No other classes of graphs q_n or *i*-hedrites is known to admit such simple descriptions.

VII. Parametrizing

graphs q_n

Parametrizing graphs q_n

Idea: the hexagons are of zero curvature, it suffices to give relative positions of faces of non-zero curvature.

- Goldberg (1937): All 3_n , 4_n or 5_n of symmetry (T, T_d), (O, O_h) or (I, I_h) are given by Goldberg-Coxeter construction $GC_{k,l}$.
- Fowler and al. (1988) All 5_n of symmetry D_5 , D_6 or T are described in terms of 4 parameters.
- Graver (1999) All 5_n can be encoded by 20 integer parameters.
- Thurston (1998) The 5_n are parametrized by 10 complex parameters.
- Sah (1994) Thurston's result implies that the Nrs of 3_n , 4_n , $5_n \sim n$, n^3 , n^9 .

The structure of graphs 3_n

The graph $3_{20}(D_{2d})$

Tightness

A railroad in a 3-valent plane graph G is a circuit of hexagons with any two of them adjacent on opposite edges.

They are bounded by two zigzags.

- A graph is called tight if and only if it has no railroads.
- If a 3- (or 4-)valent plane graph G_0 has no q-gonal faces with q=6 (or 4) and gcd(k,l) = 1 then $GC_{k,l}(G_0)$ is tight.

z- and railroad-structure of graphs 3_n

All zigzags are simple.

The z-vector is of the form

 $(4s_1)^{m_1}, (4s_2)^{m_2}, (4s_3)^{m_3}$ with $s_i m_i = \frac{n}{4};$

the number of railroads is $m_1 + m_2 + m_3 - 3$.

- G has ≥ 3 zigzags with equality if and only if it is tight.
- If G is tight, then $z(G) = n^3$ (so, each zigzag is a Hamiltonian circuit).
- All 3_n are tight if and only if $\frac{n}{4}$ is prime.
- There exists a tight 3_n if and only if $\frac{n}{4}$ is odd.

Conjecture on $4_n(D_{3h}, D_{3d} \text{ or } D_3)$

↓

 $4_n(D_3 \subset D_{3h}, D_{3d}, D_6, D_{6h}, O, O_h)$ are described by two complex parameters. They exists if and only if $n \equiv 0, 2$ (mod 6) and $n \geq 8$.

 $4_n(D_3)$ with one zigzag The defining triangles

- $4_n(D_{3d} \subset O_h, D_{6h})$ exists if and only if $n \equiv 0, 8 \pmod{12}$, $n \ge 8$.
- If *n* increases, then part of $4_n(D_3)$ amongst $4_n(D_{3h}, D_{3d}, D_3)$ goes to 100%

More conjectures

- All 4_n with only simple zigzags are:
 - $GC_{k,0}(Cube)$, $GC_{k,k}(Cube)$ and
 - the family of $4_n(D_3 \subset ...)$ with parameters (m, 0) and (i, m - 2i) with n = 4m(2m - 3i) and $z = (6m - 6i)^{3m-3i}, (6m)^{m-2i}, (12m - 18i)^i$ They have symmetry D_{3d} or O_h or D_{6h}
- Any $4_n(D_3 \subset \ldots)$ with one zigzag is a $4_n(D_3)$.
- For tight graphs $4_n(D_3 \subset ...)$ the *z*-vector is of the form a^k with $k \in \{1, 2, 3, 6\}$ or a^k, b^l with $k, l \in \{1, 3\}$
- Tight $4_n(D_{3d})$ exist if and only if $n \equiv 0 \pmod{12}$, they are z-transitive with
 - $z = (n/2)_{n/36,0}^{6}$ iff $n \equiv 24 \pmod{36}$ and, otherwise,

•
$$z = (3n/2)_{n/4,0}^2$$
 iff $n \equiv 0, 12 \pmod{36}$

