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Definition of a fullerene

A (geometric) fullerene Fv is a simple (i.e., 3-valent) polyhedron
(putative carbon molecule) whose v vertices (carbon atoms)
are arranged in p5 = 12 pentagons and p6 = ( v2 − 10) hexagons.

Fv exist for all even v ≥ 20 except v = 22.
1, 0, 1, 1, 2, 3, 6 . . . , 1812, . . . 214127713, . . . isomers Fv for v=
20, 22, 24, 26, 28, 30, 32 . . . , 60, . . . , 200, . . . .
Graphite lattice {63} can be seen as ”largest fullerene” F∞.

Thurston, 1998, implies: the number of Fv grows as v9.

Only 4 Frank–Kasper fullerenes (having isolated hexagons):
unique ones F20,F24,F26 and F28(Td), one of two F28.
∞ of IP fullerenes (isolated pentagons; denote such by Cv );
the smallest is the truncated Icosahedron C60(Ih).

Curl–Kroto–Smalley, 1985, synthesised it as carbon allotrope
backminsterfullerene (Nobel Prize, 1996, in Chemistry). But
Goldberg (1935, 1937) and rev. Kirkman, 1882: 80 of 89 F44.
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Original Goldberg–Coxeter construction

Any icosahedral fullerene (i.e., of symmetry Ih or I ), has
v=20(p2+pq+q2) with 0≤q≤ p; Ih for p = q 6= 0 and for q = 0.
Below are cases of C60(Ih); (p, q)=(1, 1), truncated Icosahedron,
and C80(Ih); (p, q)=(2, 0), chamfered Dodecahedron. Besides
Dodecahedron, they are only icosahedral fullerenes with v ≤ 80.

This construction: parameterization by Eisenstein integer p+qω.
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Extended family of fullerenes; main considered ones are:

({a, b}; k) on S2, P2, T2 or K2, i.e., k-valent maps with only
a- and b-gonal faces, of curvature 1 + i

k −
i
2 ≥ 0 for i = a, b.

b-icosahedrites, i.e., ({3, b}, 5)-S2 with b≥4.

G -fulleroids, i.e., ({5, b}, 3)-S2 with b>6 and symmetry G .

c-disk-fullerenes, i.e., ({5, 6, c}, 3)-S2 with pc = 1.

c-near-fullerenes ({5, 6, c}, 3)-S2, with all 5- and c-gons
forming min(12, pc) lego (isomorphic disjoint clusters of faces)
especially, lego-like fullerenes ({5, 6}, 3)-S2, with all faces
forming min(p5, p6) = min(12, p6) legos.

Azulenoids, i.e., ({5, 6, 7}, 3)-T2; such tori have p5 = p7.

Schwartzits, i.e., ({6, 7}, 3)- and ({6, 8}, 3)-maps of genus
g ≥ 2 on minimal surfaces of constant negative curvature.

Plane fullerenes, i.e., ({5, 6}, 3)-E2; such planes have p5 ≤ 6.

Also, space fullerenes (E3-tilings by fullerenes) and fullerene
manifolds (manifolds whose 2-faces are only 5- or 6-gonal).
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Main considered properties of those maps

Usual ones: symmetries, computer enumeration (when
feasible), generation, connectivity and so on.

Parameterization by complex numbers, esp. Goldberg–Coxeter
construction (1-parameter case) using rings Z[ω] and Z[i ].

By analogy with v -, p-vectors enumerating map’s vertices and
faces, edges are represented by z-vector enumerating zigzags
(left-right circuits doubly covering edge-set). Main interesting
cases: knot (unique zigzag), pure (no zigzag self-intersects)
and tight (no railroad, i.e. pair of ”parallel” zigzags) maps.
Similar theory is build for central circuits of even-valent maps.

This material, except lego-like and near-parabolic maps, to appear,
is presented in our books: M.Deza and M.Dutour Sikirić, Geometry
of Chemical Graphs, Cambridge University Press, 2008, and
M.Deza, M.Dutour Sikirić and M.Shtogrin, Geometric Structure of
Chemistry-relevant Graphs, Springer, 2015.
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Fullerenes and other 7
families of parabolic
({a, b}; k)-spheres
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(R , k)-spheres: curvature κi=1+ i
k −

i
2 of i -gons

Fix R ⊂ N. An (R, k)-sphere is a k-regular, k ≥ 3, map on S2
whose faces are i-gons, i ∈ R. Let m=min and M=maxi∈R i .

Let v , e and f =
∑

i pi be the map’s numbers of vertices,
edges and faces, where pi is the number of i-gonal faces. So,
kv=2e=

∑
i ipi and Euler formula v − e + f = 2 become

2=
∑

i piκi , where κi=1+ i
k −

i
2 is the curvature of i-gons.

κm≥0 implies m< 2k
k−2 ; so, m≥3, implies 3 ≤ m, k ≤ 5, i.e. 5

Platonic parameters (m, k)=(3, 3), (4, 3), (3, 4), (5, 3), (3, 5).

(R, k)-sphere is elliptic if M< 2k
k−2 , i.e., mini∈R κi > 0; then

either 1) k = 3, M ≤ 5, or 2) k ∈ {4, 5}, M ≤ 3.
So, for m ≥ 3, such are only Octahedron, Icosahedron and
10 ({3, 4, 5}, 3)-spheres: 8 dual deltahedra and the Cube’s
truncations on 1 or 2 opposite vertices (Dürer octahedron).
In other words, five Platonic and seven ({3, 4, 5}, 3)-spheres.
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Parabolic (R , k)-spheres

(R, k)-sphere is parabolic if M= 2k
k−2 , i.e. mini∈R κi=0.

So, (M, k)=(6, 3), (4, 4), (3, 6) (Euclidean parameter pairs).
Exclusion of i-faces with κi<0 simplifies enumeration, while
number pM of flat (κM=0) M-gonal faces not being
restricted, there is an infinity of such (R, k)-spheres.

The number of such v -vertex (R, k)-spheres with |R|=2
increases polynomially with v .
Such spheres admit parametrization and description in terms
of rings of (Gaussian if k=4 and Eisenstein if k=3, 6) integers.

(R, k)-sphere is hyperbolic if M> 2k
k−2 , i.e. mini∈R κi< 0; it do

not admit above, in general. We considered only simplest
cases, say: icosahedrites, i.e. ({3, 4}, 5)-spheres, and special
({a, b, c}; k)-spheres: those with pb = 0 or pc = 0, pb ≤ 3 or
pc = 1 or a- and c-gons forming disjoint isomorphic clusters).
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(R , k)-maps on general surface F2

Given R ⊂ N and a surface F2, an (R, k)-F2 is a k-regular
map on surface F2 whose faces have gonalities i ∈ R.

The Euler characteristic χ(F2) is v -e+f =
∑

i piκi , where
κi=1+ i

k −
i
2 and pi is the number of i-gons. So, elliptic and,

with |R|>1, parabolic (R, k)-maps exist only on S2 and P2.

In fact, all connected closed (compact and without boundary)
irreducible surfaces F2 with χ(F2)≥0 are (with χ = 2, 0, 1, 0,
respectively): orientable: sphere S2, torus T2 and
non-orientable: real projective plane P2 and Klein bottle K2.

Again, let our (R, k)-maps be parabolic, i.e., mini∈R κi = 0.
Then M=:max{i ∈ R}= 2k

k−2 , and (M, k)=(6, 3), (4, 4), (3, 6).

Also, there are infinity of parabolic maps (R, k)-F2, since the
number pM of flat (κM=0) faces is not restricted.

Also, if χ(F2)=
∑

i piκi= 0, i.e. F2 is T2 or K2, then R={M}
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8 families of parabolic ({a, b}; k)-spheres

An ({a, b}; k)-sphere is an (R, k)-sphere with R = {a, b},
1 ≤ a < b. It has v= 1

k (apa + bpb) vertices.

Such parabolic sphere has b = 2k
k−2 ; so, (b, k)=

(6, 3), (4, 4), (3, 6) and Euler formula become
2 = κapa=(1 + a

k −
a
2)pa=(1− a

b )pa.

So, pa = 2b
b−a and all possible (a, pa) are:

(5, 12), (4, 6), (3, 4), (2, 3) for (b, k)=(6, 3);
(3, 8), (2, 4) for (b, k)=(4, 4);
(2, 6), (1, 3) for (b, k)=(3, 6).

Those 8 families can be seen as spheric analogs of the regular
plane partitions {63}, {44}, {36} with pa disclinations
(”defects”) κa added to get the curvature 2 of the sphere.
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8 parabolic families: existence criterions

Grűnbaum–Motzkin, 1963: criterion for k=3 ≤ a;
Grűnbaum, 1967: for ({3, 4}, 4)-spheres;
Grűnbaum–Zaks, 1974: for a = 1, 2.

k (a, b) smallest one it exists if and only if pa v Ord Gr

3 (5, 6) Dodecahedron p6 6= 1 12 20+2p6 v9 28
3 (4, 6) Cube p6 6= 1 6 8+2p6 v3 16
4 (3, 4) Octahedron p4 6= 1 8 6+p4 v5 18
6 (2, 3) Bundle6=6×K2 p3 is even 6 2+ p3

2
v4 22

3 (3, 6) Tetrahedron p6 is even 4 4+2p6 v 5
4 (2, 4) Bundle4= 4×K2 p4 is even 4 2+p4 v 5

3 (2, 6) Bundle3=3×K2 p6=(k2+kl+l2)−1 3 2+2p6 v 2

6 (1, 3) Trifolium p3=2(k2+kl+l2)−1 3 1+p3
2

v 3

5 (3, 4) Icosahedron p4 6= 1 2p4+20 2p4+12 exp 38
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8 families of parabolic ({a, b}; k)-spheres

Let us denote ({a, b}; k)-sphere with v vertices by {a, b}v .

({5, 6}, 3)- and ({4, 6}, 3)-spheres are models of molecules of
(chemical) fullerenes and boron nitrides., respectively.

({a, b}, 4)-spheres are minimal projections of alternating links,
whose components are their central circuits (those going only
ahead) and crossings are the vertices.

Bundlem is m × K2. Trifolium {1, 3}1 is the 3-rose 3× (aa).

b-icosahedrites (({3, b}, 5)-spheres) are hypebolic if b>3,
pb>0, since p3=pb(3b-10)+20 and κb = 10−3b

10b < 0.
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Generation of 4 simplest parabolic ({a, b}; k)-spheres

({3, 6}, 3)- (Grűnbaum–Motzkin, 1963) and ({2, 4}, 4)-spheres
(Deza–Shtogrin, 2003) admit a 2-parametric description (by 2
complex numbers) and also a description by 3 integers.

1-parametric description: ({2, 6}, 3)-spheres are given by the
Goldberg–Coxeter construction from Bundle3 {2, 6}2=3×K2.

({1, 3}, 6)-spheres come by this construction (extended on
6-regular spheres) from Trifolium {1, 3}1=3×(aa).

({2, 3}, 6)-spheres, except of 6× K2 and 3× K3, are the duals
of ({3, 4, 5, 6}, 3)-spheres with six new vertices put on edges.
Example: ({5, 6}, 3)-spheres with 5-gons organized in 6 pairs.

({1, 2, 3}, 6)-spheres with v>3, except of 5 infinite series, are
the duals of ({3, 4, 5, 6}, 3)-S2 with splitting (into a 2-gon or
into a 2-gon, enclosing a 1-gon) of some edges.



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

First four ({4, 6}, 3)- and ({5, 6}, 3)-spheres (fullerenes)

Oh (64) D6h (182) D3h (62; 30) D2d (242)

Ih (106) D6d (12; 60) D3h (123; 42) Td (127)
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First four ({2, 6}, 3)- and ({3, 6}, 3)-spheres

Number of ({2, 6}v ’s is nr. of representations v=2(k2 + kl + l2),
0 ≤ l ≤ k (GCk,l({2, 6}2)). It become 2 for v=72=52+15+32.

D3h (6) D3h (63) D3h (122) D3 (42)

Td (43) D2h (82, 42) Td (123) Td (86)
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First four ({2, 4}, 4)- and ({3, 4}, 4)-spheres

D4h 221 (22) D4h 421 (42) D2h 2×221 (22, 4) D2d 622 (62)

Oh 632 (43)
Borr. rings D4d 818 (16)

D3h 940 (18)
(Herschel)∗

D2 10256
(6; 14)

Above links/knots are given in Rolfsen, 1976 and 1990, notation.
Herschel graph: smallest non-Hamiltonian polyhedral graph.
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First four ({2, 3}, 6)- and ({1, 3}, 6)-spheres

D6h (23) D3h (3; 6) D2d (22; 8) Td (34)

C3v (3) C3h (3; 6) C3v (62) C3 (21)
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({a, b}; k)-spheres
with pb ≤ 3: listings
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({a, b}; k)-spheres with pb ≤ 2< a < b

Remind: (a, k)=(3, 3), (4, 3), (3, 4), (5, 3), (3, 5) if k , a ≥ 3.

The only ({a, b}; k)-spheres with pb ≤ 1 are 5 Platonic (ak):
Tetrahedron, Cube (Prism4), Octahedron (APrism3),
Dodecahedron (snub Prism5), Icosahedron (snub APrism3).

There exists unique trivial 3-connected ({a, b}; k)-sphere with
pb=2 for ({4, b}, 3)-, ({3, b}, 4)-, ({5, b}, 3)-, ({3, b}, 5)-:
Dbh Prismb and Dbd APrismb, snub Prismb, snub APrismb:
two b-gons separated by b-ring of 4-gons, 2b-ring of 3-gons,
two b-rings of 5-gons, two 3b-rings of 3-gons.

Also, for t≥2, 10 non-trivial ({a, at}; k)-spheres with pat=2:
5 ({a, ta}; k)-spheres are (Dth) necklaces of polycycles {ak}-e;
3 are (Dth) necklaces of t v -split {34} and e-split {53}, {35};
({3, 3t}, 5)-spheres Cth, Dt are necklaces of t v -, f -split {35}.
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({a, b=ta}; k)-spheres with pb=2< a, k=3, 4, 5; case t=2

D2h: a=3 a=4 a=5 a=5

a=3 D2h a=3 D2h

a=3 D2h a=3 D2h a=3 C2h a=3 D2
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Proof method: elementary (a, k)-polycycles

A (a, k)-polycycle is a 2-connected plane graph with faces
partitioned in a-gonal proper faces and holes, exterior face
among them, so that vertex degrees are in {2, . . . , k} and can
be < k only for a vertex lying on the boundary of a hole.

Any (a, k)-polycycle decomposes uniquely along its bridges
(non-boundary going hole-to-hole, possibly, same, edges)
into elementary ones. Cf. integer factorisation into primes.

We listed them for κa=1+ a
k −

a
2≥0. Othervise, continuum.

This ({5, 15}, 3)-sphere with p15=3 is a 3-holes ({5}, 3)-polycycle
It decomposes into five 1-hole elementary ({5}; k)-polycycles.



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

({a, b}, 3)-spheres with pb = 3≤ a

({a, b}; k)-sphere with pb = 3≤ a exists if and only if
b ≡ 2, a, 2a− 2 (mod 2a) and b ≡ 4, 6 (mod 10) if a=5.

There are 7 such spheres with t=bb6c=0 and
3+4+5+17 of them for any t ≥ 1.

Such sphere are unique if b is not ≡ a (mod 2a) and then
their symmetry is D3h, except (a, k) = (3, 5), when it is D3.

8, D3h

({2, 6}; 3)-
~p=(3, 3)

14, D3h

({4, 6}; 3)-
~p=(6, 3)

26, D3h

({5, 6}; 3)-
~p=(12, 3)

9, D3h

({3, 4}; 4)-
~p=(8, 3)

18, D3

({3, 4}; 5)-
~p=(26, 3)
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({a, b}, k)-spheres with a = 1, 2 and pb = 1

There are no ({a, b}; k)-spheres with a ≥ 2, having pb = 1.

The only ({1, b}; k)-spheres with pb=1 are:
1-vertex b-foliums (K1 with b 1-gons); so, k=2b≥4, p1=b and
2-vertex b-dumbbells (K2 with b−2

2 1-gons on each vertex);
so, having odd k=b − 1≥3 and p1=b − 2.
2-folium and 4-dumbbell are elliptic, 3-folium is parabolic.

3-folium
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({a, b}, k)-spheres with a = 1, 2 and pb = 2

An ({2, b}; k)-S2 with pb=2 exists if and only if bk is even,

and then it has ~p=(b(k−2)2 , 2) and v=b vertices. It is either,

for odd b, b-cycle with edges repeated k
2 times;

or, for even b and any integer m ∈ [1, k2 ], b-cycle with edges
repeated, alternatively, m and k −m times.
An ({1, b}; k)-sphere with pb=2 exists iff v= 4b

k+2∈N, and
then it has v vertices and ~p=(2(b − v), 2). It is either,
for k = 3, a 2b

5 -cycle with matches from each cycle’s vertex,
so that the same number of them goes inside and outside.
or, for k ≥ 4, a 4b

k+2 -cycle with k−2
2 1-gons from each vertex,

so that the same number of them goes inside and outside.

4, D4h

({2, 4}; 4)-
~p=(4, 2)

4, D2h

({2, 4}; 4)-
~p=(4, 2)

4, C2h

({1, 5}; 3)-
~p=(2, 2)

2, C2h

({1, 3}; 4)-
~p=(2, 2)
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Symmetry groups of

({a, b}; k)-spheres
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Finite isometry groups

All finite groups of isometries of 3-space E3 are classified.
In Schoenflies notations, they are:

C1 is the trivial group

Cs is the group generated by a plane reflexion

Ci = {I3,−I3} is the inversion group

Cm is the group generated by a rotation of order m of axis ∆

Cmv (' dihedral group) is the group generated by Cm and m
reflexion containing ∆

Cmh = Cm × Cs is the group generated by Cm and the
symmetry by the plane orthogonal to ∆

S2m is the group of order 2m generated by an antirotation, i.e.
commuting composition of a rotation and a plane symmetry
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Finite isometry groups Dm, Dmh, Dmd

Dm (' dihedral group) is the group generated of Cm and m
rotations of order 2 with axis orthogonal to ∆

Dmh is the group generated by Dm and a plane symmetry
orthogonal to ∆

Dmd is the group generated by Dm and m symmetry planes
containing ∆ and which does not contain axis of order 2

D2h D2d
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Remaining 7 finite isometry groups

Ih = H3 is the group of isometries of Dodecahedron;
Ih ' Alt5 × C2

I ' Alt5 is the group of rotations of Dodecahedron

Oh = B3 is the group of isometries of Cube

O ' Sym(4) is the group of rotations of Cube

Td = A3 ' Sym(4) is the group of isometries of Tetrahedron

T ' Alt(4) is the group of rotations of Tetrahedron

Th = T ∪ −T

While (point group) Isom(P) ⊂ Aut(G (P)) (combinatorial group),
Mani, 1971: for any 3-polytope P, there is a map-isomorphic
3-polytope P ′ (so, with the same skeleton G (P ′) = G (P)), such
that the group Isom(P ′) of its isometries is isomorphic to Aut(G ).
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8 parabolic families: symmetry groups

1 28 for {5, 6}v : C1, Cs , Ci ; C2, C2v , C2h, S4; C3, C3v , C3h, S6;
D2, D2h, D2d ; D3, D3h, D3d ; D5, D5h, D5d ; D6, D6h, D6d ; T ,
Td , Th; I , Ih (Fowler–Manolopoulos, 1995)

2 16 for {4, 6}v : C1, Cs , Ci ; C2, C2v , C2h; D2, D2h, D2d ; D3,
D3h, D3d ; D6, D6h; O, Oh (Deza–Dutour, 2005)

3 5 for {3, 6}v : D2, D2h, D2d ; T , Td (Fowler–Cremona,1997)

4 2 for {2, 6}v : D3, D3h (Grűnbaum–Zaks, 1974)

5 18 for {3, 4}v : C1, Cs , Ci ; C2, C2v , C2h, S4; D2, D2h, D2d ; D3,
D3h, D3d ; D4, D4h, D4d ; O, Oh (Deza-Dutour-Shtogrin, 2003)

6 5 for {2, 4}v : D2, D2h, D2d ; D4, D4h, all in [D2,D4h] (same)

7 3 for {1, 3}v : C3, C3v , C3h (Deza–Dutour, 2010)

8 22 for {2, 3}v : C1, Cs , Ci ; C2, C2v , C2h, S4; C3, C3v , C3h, S6;
D2, D2h, D2d ; D3, D3h, D3d ; D6, D6h; T , Td , Th (same)

38 for icosahedrites ({3, 4}, 5)- (same, 2011).
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8 families: Goldberg–Coxeter construction GCk,l(.)

With T={T ,Td ,Th}, O={O,Oh}, I={I , Ih}, C1={C1,Cs ,Ci},
Cm={Cm,Cmv ,Cmh, S2m}, Dm={Dm,Dmh,Dmd}, we get

1 for ({5, 6}, 3)-: C1, C2, C3, D2, D3, D5, D6, T, I

2 for ({2, 3}, 6)-: C1, C2, C3, D2, D3, {D6,D6h}, T
3 for ({4, 6}, 3)-: C1, C2\S4, D2, D3, {D6,D6h}, O
4 for ({3, 4}, 4)-: C1, C2, D2, D3, D4, O

5 for ({3, 6}, 3-: D2, {T ,Td} {D3,D3h}
6 for ({2, 4}, 4)-: D2, {D4,D4h}
7 for ({2, 6}, 3)-: D3\D3d= {D3,D3h}
8 for ({1, 3}, 6)-: C3\S6={C3,C3v ,C3h}

if ({3, 4}, 5)-: C1, C2, C3, C4, C5, D2, D3, D4, D5, T, O, I.

Spheres of blue symmetry are GCk,l from 1st such; so, given by
one complex (Gaussian for k=4, Eisenstein for k=3, 6) parameter.
Goldberg, 1937 and Coxeter, 1971: {5, 6}v (I , Ih), {4, 6}v (O,Oh),
{3, 6}v (T ,Td). Dutour-Deza, 2004 and 2010: for other cases.
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Goldberg–Coxeter (1 parameter) construction GCk ,l(.)

Take a 3- or 4-regular plane graph G . The faces of dual graph
G ∗ are triangles or squares, respectively.

Break each face into pieces according to parameter (k , l).
Master polygons below have area A(k2+kl+l2) or A(k2+l2),
where A is the area of a small polygon.

3−valent case

k=5

l=2
l=2

k=5

4−valent case
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Gluing the pieces together in a coherent way

Gluing the pieces so that, say, 2 non-triangles, coming from
subdivision of neighboring triangles, form a small triangle, we
obtain another triangulation or quadrangulation of the plane.

The dual is a 3- or 4-regular plane graph, denoted GCk,l(G );
we call it Goldberg–Coxeter construction.

It works for any 3- or 4-regular map on oriented surface.
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GCk,l(Cube) for (k , l) = (1, 0), (1, 1), (2, 0), (2, 1)

1,0 1,1

2,0 2,1
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Goldberg–Coxeter construction from Octahedron

1,0 1,1 2,0

2,1
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The case (k , l)=(1, 1) of GCk ,l(G )

For 3-regular G=(V ,E ),
GC1,1 is called leapfrog

(13 -truncation of the dual),
3|V | vertices.

Truncated Octahedron

For 4-regular G=(V ,E ),
GC1,1 is called medial

(12 -truncation),
|E | vertices

Cuboctahedron
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The case (k , l)=(k , 0) of GCk ,l(G ): k-inflation

Chamfering (quadrupling) GC2,0(G ) of smallest ({a, b}; k)-spheres,
(a, b)=(2, 6), (3, 6), (4, 6), (5, 6) and (2, 4), (3, 4), (1, 3), (2, 3), are:

D3h (122) Td (86) Oh (128) Ih (2012)

D4h (44) Oh (86) C3v (62) D6h (43, 62)
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First four GCk ,l(4×K2) and GCk ,l(6×K2)

D4h 4×K2 D4h medial D4h G2,0 D4 G2,1

D6h 6×K2 D3d G1,1 D6h G2,0 D6 G2,1
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First four GCk ,l(3×K2) and GCk ,l(Trifolium = 3×(aa))

All ({2, 6}, 3)-spheres are Gk,l(3×K2): D3h, D3h, D3 if l=0, k, else.

D3h 3×K2 D3h leapfrog D3h G2,0 D3 G2,1

C3v 3×(aa) C3h G1,1 C3v G2,0 C3 G2,1

All ({1, 3}, 6)-spheres are Gk,l(3×(aa)): C3v , C3h, C3 if l=0, k , else



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Plane tilings {44}, {36} and complex rings Z[i ], Z[ω]

The vertices of regular plane tilings {44} and {36} form each,
convenient algebraic structures: lattice and ring. Path-metrics
of those graphs are l1- 4-metric and hexagonal 6-metric, resp.

{44}: square lattice Z2 and ring Z[i ]={z=k+li : k , l ∈ Z} of
Gaussian integers with norm N(z)=zz=k2+l2=||(k , l)||2.

{36}: hexagonal lattice A2={x ∈ Z3 : x0+x1+x2=0} and ring
Z[ω]={z=k+lw : k , l ∈ Z}, where ω=e i

π
3 =1

2(1+i
√

3), of
Eisenstein integers with norm N(z)=zz=k2+kl+l2=||(k , l)||2.
We identify points x=(x0, x1, x2) ∈ A2 with x0+x1ω ∈ Z[ω].

Both, Z[i ] and Z[ω] are unique factorization rings.

A natural number n =
∏

i p
αi
i is of form n=k2+l2 iff any αi is

even, whenever pi ≡ 3 (mod 4) (Fermat Theorem).
It is of form n = k2 + kl + l2 if and only if pi ≡ 2 (mod 3).

The first cases of non-unicity with gcd(k , l)=gcd(k1, l1)=1
are 91=92+9+12=62+30+52 and 65=82+12=72+42.
The first cases with l=0 are 72=52+15+32 and 52=42+32.
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The bilattice of vertices of hexagonal plane tiling {63}

We identify again the hexagonal lattice A2 of the vertices of
the plane tiling {36} with Eisenstein ring Z[ω].

The hexagon centers of {63} form {36}. Also, with vertices of
{63}, they form {36}, rotated by 90◦ and scaled by 1

3

√
3.

The complex coordinates of vertices of {63} are given by
vectors v1=1 and v2=ω. The lattice L=Zv1+Zv2 is Z[ω].

The vertices of {63} form bilattice L1 ∪ L2, where the bipartite
complements, L1=(1+ω)L and L2=1+(1+ω)L, are stable
under multiplication. Using this,

GCk,l(G ) for 6-regular graph G can be defined similarly to 3- and
4-regular case, but only for z=k+lω∈L2, i.e. k ≡ l ± 1 (mod 3).
If z ∈ L1, then z=(1 + ω)s(k ′+l ′ω)ω, where k ′ ≡ l ± 1′ (mod 3)
and s≥0. Then GCk,l(G ):=Gk ′,l ′(Or

s(G )) via oriented tripling
Or(G ):=GC1,1, defined using vertex 2-coloring of bipartition of G ∗.
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Goldberg–Coxeter operation in ring terms

3-regular G 4-regular G 6-regular G
the tiling {36} {44} {63}
the lattice A2 Z2 bilattice L1 ∪ L2

the ring Eisenstein Z[ω] Gaussian Z[i ] Eisenstein Z[ω]
Euler formula

∑
i (6− i)pi=12

∑
i (4− i)pi=8

∑
i (3− i)pi=6

curvature 0 hexagons quadrangles triangles
GC11(G ) leapfrog graph medial graph oriented tripling

If GCz(G ):=GCk,l(G ), then GCz(GCz ′(G ))=GCzz ′(G ), i.e. in
ring terms, GCz(G ) corresponds to scalar multiplication by z .
Example: GC2k2,0(G )=GCk,k(GCk,k(G )) by (k+ki)2=2k2i .

G has v vertices, then GCk,l(G ) has vN(z) vertices.

GCz(G ) has all rotational symmetries of G in 3- and 4-regular
case, and all symmetries if l=0, k in general case.

GCz(G )=GCz(G ), where G differs by a plane symmetry only.
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Parameterizing parabolic (κb = 0) ({a, b}; k)-spheres
Thurston, 1993, implies: ({a, b}; k)-spheres have pa-2 parameters
and the number of v -vertex ones is O(vm−1) if m=pa − 2 ≥ 2.
Idea: since b-gons are of zero curvature, it suffices to give relative
positions of a-gons having curvature κi=1+ a

k −
a
2 .

At most pa − 1 vectors will do, since one position can be taken 0.
But once pa − 1 a-gons are specified, the last one is constrained.
The number of m-parametrized spheres with at most v vertices is
O(vm) by direct integration. The number of such v -vertex spheres
is O(vm−1) if m > 1, by a Tauberian theorem.

Goldberg, 1937: {a, 6}v (highest 2 symmetries): 1 parameter
Fowler and al., 1988: {5, 6}v (D5, D6 or T ): 2 parameters.

Grűnbaum–Motzkin, 1963: {3, 6}v : 2 parameters.
Deza–Shtogrin, 2003: {2, 4}v ; 2 (Gaussian int.) parameters.

Thurston, 1993: {5, 6}v : 10 (Eisenstein integers) parameters
Graver, 1999: {5, 6}v : 20 integer parameters.

Rivin, 1994: {5, 6}v : parametrization by 18 dihedral angles.
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Parameterizing (R , k)-spheres with mini∈R κi ≥ 0

Thurston, 1998 (actually, 1993) parametrized (dually) all 19 series
of ({3, 4, 5, 6}, 3)-spheres. In general, such (R, k)-spheres are given
by m=

∑
3≤i< 2k

k−2
pi − 2 complex parameters z1, . . . , zm.

The number of vertices is expressed as a non-degenerate Hermitian
form q=q(z1, . . . , zm) of signature (1,m − 1).
Let Hm be the cone of z=(z1, . . . , zm) ∈ Cm with q(z) > 0.
Given (R, k)-sphere is described by different parameter sets; let
M=M({p3, . . . , pm}; k) be the discrete linear group preserving q.
For k=3, the quotient Hm/(R>0 ×M) is of finite covolume. Sah,
1994, deduced: the number of corresp. spheres grows as O(vm−1)
Dutour partially generalized above for other k and surface maps.
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8 families: number of complex parameters by groups

1 {5, 6}v C1(10), C2(6), C3(4), D2(4), D3(3), D5(2), D6(2),
T(2), {I , Ih}(1)

2 {4, 6}v C1(4), C2\S4(3), D2(2), D3(2), {D6,D6h}(1),
{O,Oh}(1)

3 {3, 4}v C1(6), C2(4), D2(3), D3(2), D4(2), {O,Oh}(1)

4 {2, 3}v C1(4), C2(3), C3(3), D2(2), D3(2), T(1),
{D6,D6h}(1)

5 {3, 6}v D2 (2) (also, 3 natural parameters), {T ,Td}(1)

6 {2, 4}v D2(2) (also, 3 natural parameters), {D4,D4h}(1)

7 {2, 6}v {D3,D3h}(1)

8 {1, 3}v {C3,C3v ,C3h}(1)

Thurston, 1998 implies: ({a, b}; k)-S2 have pa − 2 parameters and
the number of v -vertex ones is O(vm−1) if m=pa − 2 > 1.
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LEGO-LIKE ({a, b}; k)-
SPHERES AND TORI
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Let all faces be partitioned into isomorphic clusters

lego-like maps: ({a, b}; k)-F2 with 1≤a<b and all faces
partitioned into min(pa, pb) legos (isomorphic disjoint clusters
of faces); they are called abf lego-like or af b lego-like, resp.

m-reducible maps: (R; k)-F2 with all faces partitioned into
m ≥ 2 legos (isomorphic disjoint clusters of faces). Clearly,
m ≤ mina∈R pa holds with equality exactly for lego-like maps.

4, D2h

({1, 4}; 5)-
~p=(4, 4)

22, D3d

({3, 4}; 4)-
~p=(8, 16)

28, D2

({5, 6}; 3)-
~p=(12, 4)

44, D3d

({5, 6}; 3)-
~p=(12, 12)

2-reducible ({a, b}; k)-S2 with 2 < min(pa, pb). All but 1-st are lego-like
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Another generalization: c-near-parabolic maps

A c-near-parabolic map is ({a, b, c}; k)-F2 with 1≤a<b= 2k
k−2 and

all a- and c-gonal faces partitioned into min(pc ,
bχ
b−a) legos.

They are exactly parabolic maps ({a, b}; k)-F2 if c=a (clusters are
a-gons) and parabolic lego-like maps ({a, b}; k)-F2 if c = b.
They are some hyperbolic maps if κc = 1 + c

k −
c
2 < 0, i.e., c > b.

Each of above two 7-near-fullerenes ({5, 6, 7}, 3)-S2 (with
~p = (p5, p6, p7) = (72, 0, 60) and (72, 1460, 60) has 12 legos,

consisting of six 5-gons and five 7-gons. Only 1-st is lego-like.
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New frontier: to enumerate c-near-fullerenes

c-near-fullerenes exist iff c≥5; they are fullerenes (clusters are
5-gons) for c=5 and 56f lego-like fullerenes for c=6.

The spherical Voronoi polyhedra of many energy potential
minimizers (say, in Thomson problem for v unit-charged
particles on sphere S2) and maximizers (say, in Tammes
problem of minimum distance between v points on S2) are
fullerenes or, for large v , 7-near-fullerenes.

Haeckel, 1887, represented skeletons of zooplankton Aulonia
by near-fullerene-looking ({5, 6, 7}, 3)- and ({5, 6, 8}, 3)-S2.
Same holds for some basket’s patterns.

But needed computations are too hard; so, we considered
lego-likeness only, but for any ({a, b}; k)-spheres and tori.
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Enumeration of lego-like fullerenes

A fullerene is lego-like if all its 12 + p6 faces are partitioned into
min(p6, 12) legos (isomorphic clusters). So, 12

p6
or p6

12 is an integer.

All 1, 1, 2, 6, 89 of, resp., 24, 26, 28, 32, 44-vertex fullerenes are
5f 6 lego-like with f = 12

p6
= 6, 4, 3, 2, 1, respectively.

Larger such fullerenes have v=20+2p6≡20 (mod 24) vertices.
4, 281 of 6, 332 68-vertex and 5, 520 of 126, 409 92-vertex
fullerenes are 56f lego-like with f = p6

12=2, 3, respectively.

Any Goldgerg–Coxeter GCs,s−1(Dodecahedron) fullerene has
v=20+120

(s
2

)
and it is lego-like. Its 12+60

(s
2

)
faces form 12

legos: 5-gon surrounded by s-1 coronas of 6-gons.
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All 11 possible lego’s kinds in 28-vertex fullerenes

28 Td(S4) 13 Td(S4) 13 Td(S4) 13 Td(S4) 13

28 Td(T ) 13 Td(D2) 13 Td(D2) 13

28 D2(D2) 25 D2(D2) 25 D2(D2) 25 D2(D2) 25

Representatives of all kinds of lego tilings in F28(Td) and F28(D2) having
lego-wise, 2, 1, 1, 1, 1, 4, 2, 0, 1, 0, 0 and 3, 1, 3, 3, 0, 5, 5, 1, 1, 2, 1 orbits



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

All possible lego’s kinds in 32-, 44-, 68-vertex fullerenes

32 D3d(D3)
2+6+1+0

D3d(D3)
2+6+1+0

D3d(D3d)
2+6+1+0

D3h(D3)
1+4+0+1

44 D3h(D3)
69

68 Td(T )
1+1+40+0

Td(T )
1+1+40+0

Td(T )
1+1+40+0

D3d(D3)
0+0+0+1
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All possible lego’s kinds in 92-vertex fullerenes

92,Th(T ) 92, Th(T ) 92, Th(S6) 92, Th(S6) 92, Td(T )

92, Td(T ) 92, Td(T ) 92, Td(T ) 92, Td(T ) 92, Td(T )

92, Td(T ) 92, Td(T ) 92, Td(T ) 92, T (T ) 92, T (T )



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Parabolic lego-like ({a, b}; k)-S2: computations
For (3, 6; 3), (2, 6; 3), (2, 4; 4), all computed spheres are lego-like.

k lego (pa, pb) v nbG/real. nbCases/real. nbCasesRed/real. Max./Min. total

3 436 (6,2) 12 1/1 9/3 7/3 3/3 3

3 426 (6,3) 14 1/1 4/2 4/2 2/2 2
3 46 (6,6) 20 3/3 1/1 1/1 9/2 13

3 462 (6,12) 32 8/8 5/5 4/4 18/3 59

3 463 (6,18) 44 14/14 21/20 13/13 36/2 132

3 464 (6,24) 56 23/20 103/86 57/53 60/1 324

3 566 (12,2) 24 1/1 628/31 328/31 31/31 31

3 546 (12,3) 26 1/1 62/6 36/6 6/6 6

3 536 (12,4) 28 2/2 18/16 11/11 25/13 38

3 526 (12,6) 32 6/6 5/5 4/4 13/4 45
3 56 (12,12) 44 89/89 1/1 1/1 627/1 11846

3 562 (12,24) 68 6332/4281 5/5 4/4 128/1 36760

3 563 (12,36) 92 126409/5520 25/25 15/15 287/1 18691

4 344 (8,2) 8 1/1 20/5 13/5 5/5 5

4 324 (8,4) 10 2/2 4/4 3/3 8/4 12
4 34 (8,8) 14 8/8 1/1 1/1 11/1 27

4 342 (8,16) 22 51/43 4/4 3/3 14/1 268

4 343 (8,24) 30 218/69 16/16 10/10 20/1 311

4 344 (8,32) 38 650/118 59/54 33/32 30/1 412

4 345 (8,40) 46 1653/327 229/157 121/94 77/1 1312

6 233 (6,2) 3 1/1 4/2 3/2 2/2 2
6 23 (6,6) 5 2/2 1/1 1/1 2/1 3

6 232 (6,12) 8 12/10 3/3 2/2 4/1 22

6 233 (6,18) 11 16/9 7/6 4/4 5/1 19

6 234 (6,24) 14 42/18 22/18 12/10 10/1 52

6 235 (6,30) 17 48/11 61/27 32/17 28/1 55

6 236 (6,36) 20 100/26 180/89 93/57 29/1 179
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Parabolic lego-like ({a, b}; k)-S2: computations

A parabolic ({a, b}; k)-S2 is lego-admissible if and only if:
for fullerenes ({5, 6}; 3)- p6 | 12 or 12 | p6, i.e., either
v = 24, 26, 28, 32, or v ≡ 20 (mod 24);
for ({4, 6}; 3)- p6 | 6 or 6 | p6: v=12, 14 or v ≡ 8 (mod 12);
for ({3, 6}; 3)- p6 | 4 or 4 | p6: v = 8 or v ≡ 4 (mod 8);
for ({2, 6}; 3)- p6 | 3, impossible, or 3 | p6: v ≡ 2 (mod 6);
for ({3, 4}; 4)- p4 | 8 or 8 | p4: v=8, 10 or v ≡ 6 (mod 8);
for ({2, 4}; 4)- p4 | 4 or 4 | p4: v = 4 or v ≡ 2 (mod 4);
for ({2, 3}; 6)- p3 | 6 or 6 | p3: v = 3 or v ≡ 2 (mod 3);
for ({1, 3}; 6)- p3 | 3, impossible, or 3 | p3, impossible.

All 126 lego-admissible parabolic ({a, b}; k)-S2 with pb ≤ pa
(and all 22 ({4, 6}; 3)-S2 with p6

p4
= 2, 3) are lego-like.

For (a, b; k) = (4, 6; 3), (5, 6; 3), (3, 4; 4), (2, 3; 6), the vertex
numbers, for which a lego-admissible, but not lego-like,
parabolic ({a, b}; k)-S2 is known, are all v , not as above. For
(3, 6; 3), (2, 6; 3), (2, 4; 4), all computed spheres are lego-like.



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

({4, 6}, 3)-S2: all legos for v<44 and 2, 3 for v=44, 56

12 D6h(C2h) 12 D6h(C2) 12 D6h(D3d) 14 D3h(C3h) 14 D3h(D3)

20 D3d(S6) 32 Oh(S6) 32 Oh(S6) 32 Oh(Th) 32 D3h(D3)

44, D3(D3) 44 D3h(D3) 56, D3(D3) 56 D3d(S6) 56 O(T )



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

({3, 4}, 4)-S2: all legos for v<30 and 1 for v=30, 38, 46

8 D4d(C2) 8 D4d(C2) 8 D4d(C2) 8 D4d(D2) 8 D4d(D4d)

10 D2(D2) 10 D4h(D2) 10 D4h(D4h) 14 D4h(D2d) 22 D4(D4)

22 D2d(D2) 22 D4h(D4h) 30 O(O) 38 D4(D4) 46 D4h(D4)



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

({2, 3}, 6)-S2: all legos for v<14 and 2 for v=14, 17, 20

3, D3h(C2) 3, D3h(D3h) 5, D3h(D3) 8, D6h(D6h) 8, D6h(D3)

11, C2(C2) 11, D3h(D3h) 11, D3h(D3) 11, D3h(D3) 14, D6(D6)

14, D3(D3) 17, C2(C2) 17, D3(D3) 20, D3d(S6) 20, D3h(D3)



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Goldberg–Coxeter series GCz(G0): lego-admissibility
Such ({a, b}; k)-S2 are parameterized by one z ∈ C: Gaussian
integer s+ti , ||z ||=zz=s2 + t2 for k=4 and Eisenstein integer

s + tω, ω = e
2π
6
i = 1+i

√
3

2 , ||z ||=zz =s2 + st + t2 for k=3, 6.

We have GCz(Gz ′(G0))=Gz ′′(G0), where z ′′=zz ′ is
multiplication in the rings Z[i ]=Z2 and Z[ω] of such integers.

Given z ∈ Z[i ] or ∈ Z[ω] and a parabolic ({a, b}; k)-sphere G0

with pa a-gons, pb b-gons and so, v = a
k pa + b

k pb vertices, the
parabolic ({a, b}; k)-sphere GCz(G0) has v ′ = v ||z || vertices,

p′a = pa and p′b = k
b (v ||z || − a

k pa) = ||z||a
b pa + ||z ||pb − a

bpa.

So,
p′b
p′a

= (||z || − 1) a
b + ||z ||pbpa∈ N if pb

pa
∈ N and for (a, b; k) =

(5, 6; 3), (3, 4; 4), (2, 3; 6): ||z || ≡ 1 (mod b),
(3, 6; 3), (2, 4; 4): ||z || ≡ 1 (mod 2) and
(4, 6; 3), (2, 6; 3): ||z || ≡ 1 (mod 3).

Each of 7 sets of all such z form a multiplicative submonoid
of Z(i) or Z(ω) (submonoids, by multiplication and addition,
of Z[i ] and Z[ω], respectively, with s ≥ t ≥ 0, (s, t) 6= (0, 0)).



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

7 || · ||-defined monoids of Eisenstein and Gaussian integers

The submonoids Z(i), Z(ω) (of Z[i ], Z[ω], respectively, with
s ≥ max(t, 1) ≥ 0) admit following three partitions into 2 monoids:

||s+tω||= s2+st+t2 ≡0 or 1, 3 (mod 4) iff s, t ≡0 (mod 2) or not
M={z ∈ Z (ω) : ||z || ≡ 1 (mod 2)} and M=Z(ω)\M are monoids.

||s+tω||= 3st+(s-t)2 ≡0 or 1 (mod 3) iff s-t ≡0 or 1, 2 (mod 3).
N={z ∈ Z (ω) : ||z || ≡ 1 (mod 3)} and N=Z(ω)\N are monoids,
since (s + tω)(s ′ + t ′ω) = (S = ss ′ − tt ′) + (T = tt ′ + st ′ + s ′t)ω
and s-t, s ′-t ′ ≡ m (mod 3) imply S-T ≡ m2 (mod 3).

L=M ∩ N={z ∈ Z (ω) : ||z || ≡ 1 (mod 6)} is also monoid.

||s+ti ||=2st+(s-t)2 ≡0, 2 or 1 (mod 4) iff s-t ≡0 or 1 (mod 2).
R={z ∈ Z (i) : ||z || ≡ 1 (mod 4)} and R=Z(i)\R are monoids.



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Two series of lego-admissible GCz(G0) with G0’s pb
pa
/∈ N

(i) ({4, 6}, 3)-S2: v ≡ 2 (mod 12), z ≡ 4 (mod 12). Smallest
case: v = 14, z = 2 + 0ω; unique G0 has pb

pa
= 3

6 , it is 426;
56-vertex GC2,0(G0) is lego-admissible but not lego like.

(ii) ({3, 4}, 4)-S2: v ≡ 3 (mod 4), z ≡ 2 (mod 4). Smallest
case: v=11, z=1+i ; both, G0 and G1,1(G0) are not lego-like.

22, C2ν ; ~p = (p3, p4) = (8, 16)
G1,1(G0=unique 11-vertex {3, 4}; 4)-S2)

It is lego-admissible (p4 = 2p3) but not lego-like, i.e., not 342



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Infinite series of lego-like Goldberg–Coxeter GCz(({a}; k))

Theorem: If ||z = s + tω|| ≡ 1 mod 6, then GCz(({a}, 3)-S2)
is a lego-like ({a, 6}, 3)-S2 for a = 2, 3, 4, 5. Moreover:
(i) GCz(Dodecahedron) is lego-like iff ||z || ≡ 1 mod 6.
(ii) GCs,s−1(({a}, k)-S2) is lego-like iff ({a}; k)-S2 lego-like,
i.e. for each of 7 (all but ({1, 3}, 6)-S2) parabolic families.
In fact, ||s + (s − 1)ω|| = s2 + s(s − 1) + (s − 1)2 = 6

(s
2

)
+ 1

and ||s + (s − 1)i || = s2 + (s − 1)2 = 4
(s
2

)
+ 1 for k = 4.

Conjecture: lego-admissible GCs,t(({a}; k)-S2) are lego-like.
Moreover: (i) One of possible legos is a-gon, surrounded, in
some a-gonal symmetry, by layers (not necessarily complete)
of b-gons. It holds for above t = s − 1, when pb

pa
= a
(s
2

)
.

(ii) If the number of vertices is large enough, no other
lego-like parabolic spheres exist.



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

All parabolic abf -spheres GC2,0 (1, 2, 3-rd) and all 7 GC2,1

Unique GC1,1: Trunc. Tetrahedron, 12, Td ; ({3, 6}; 3)-, ~p=(4, 4).

32, Oh

({4, 6}; 3)-
~p=(6, 12)

8, D3h

({2, 6}; 3)-
~p=(3, 3)

8, D6h

({2, 3}; 6)-
~p=(6, 12)

140, I
({5, 6}; 3)-
~p=(12, 60)

2,1

56, O
({4, 6}; 3)-
~p=(6, 24)

28, T
({3, 6}; 3)-
~p=(4, 12)

14, D3

({2, 6}; 3)-
~p=(3, 6)

30, O
({3, 4}; 4)-
~p=(8, 24)

10, D4

({2, 4}; 4)-
~p=(4, 8)

14,D6

({2, 3}; 6)-
~p=(6, 24)



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

All (13 and 1 infinite series) elliptic lego-like ({a, b}; k)-S2

12, D3d ({3, 5}; 3)-
~p=(2, 6)

12, D2d ({4, 5}; 3)-
~p=(4, 4)

14, D3h ({4, 5}; 3)-
~p=(3, 6)

16, D4d ({4, 5}; 3)-
~p=(2, 8)

4, D2h ({2, 4}; 3)-
~p=(2, 2)

8, D2d ({2, 5}; 3)-
~p=(2, 4)

4, D2d ({2, 3}; 4)-
~p=(2, 4)

4, D2d ({2, 3}; 5)-
~p=(4, 4)

4, D2d ({2, 3}; 5)-
~p=(4, 4)

8, D2d ({2, 3}; 5)-
~p=(2, 12)

4, C2h ({1, 5}; 3)-
~p=(2, 2)

2, C2h ({1, 3}; 4)-
~p=(2, 2)

4, C2h ({1, 3}; 5)-
~p=(2, 6)

1, C2ν ({1, 2}; k)-
~p=(2, 2 k−2

4
)



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Hyperbolic lego-like ({a, b}; k)-S2: computations

k lego (pa, pb) v nbG/real. nbCases/real. nbCasesRed/real. Max./Min. total

3 372 (12,24) 68 ≥ 105/ ≥ 101 5/5 3/3 ≥ 120/1 ≥ 2625
3 37 (6,6) 20 4/4 1/1 1/1 6/2 15

3 328 (6,3) 14 1/1 4/2 4/2 2/2 2
3 38 (12,12) 44 298/203 1/1 1/1 104/3 4812

3 339 (6,2) 12 1/1 9/4 6/4 4/4 4

3 329 (8,4) 20 3/3 4/4 4/4 6/4 15

3 427 (8,4) 20 2/2 4/4 4/4 7/4 11
3 47 (12,12) 44 127/78 1/1 1/1 224/2 3440

3 448 (8,2) 16 2/2 34/16 24/16 11/6 17

3 438 (9,3) 20 0/0 14/0 10/0 0/0 0

3 428 (12,6) 32 32/17 5/5 5/5 11/1 61

3 439 (12,4) 28 3/3 18/18 12/12 18/12 46

3 557 (15,3) 32 0/0 276/0 146/0 0/0 0

3 547 (16,4) 36 2/2 79/54 45/37 53/45 98

3 537 (18,6) 44 13/11 21/21 13/13 27/1 103

3 527 (24,12) 68 6556/1122 5/5 4/4 303/1 10976

3 568 (18,3) 38 1/1 1316/20 682/20 20/20 20

3 558 (20,4) 44 3/3 374/148 196/105 89/30 191

3 548 (24,6) 56 27/15 103/84 59/55 75/1 343

4 355 (10,2) 10 1/1 59/11 34/11 11/11 11

4 335 (12,4) 14 2/2 12/10 8/8 10/6 16

4 325 (16,8) 22 52/13 4/4 3/3 27/1 157

5 374 (28,4) 20 5/5 803/233 407/171 86/24 300

5 364 (30,5) 22 12/3 305/3 159/2 2/1 4

5 344 (40,10) 32 45460/66 39/25 22/15 8/1 115



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

All hyperbolic lego-admissible ({a, b}; k)-S2 with a ≥ 3:

For ({5, b ≥ 7}; 3)-S2: ~p =
(2b, 2), (3(b−2), 3), (4(b−3), 4), (6(b−4), 6), (12(b−5), 12).

For ({4, b ≥ 7}; 3)-S2:
~p = (b, 2), (3b−2

2 ; 3), (3(b − 4), 6) if b is even,
~p = (2(b − 3), 4), (6(b − 5), 12) if b is odd.

For ({3, b ≥ 7}; 3)-S2:
~p = (2b

3 , 2), (4b−3
3 ; 4) if b ≡ 0 (mod 3),

~p = (b − 2, 3), (4(b − 5), 12) if b ≡ 2 (mod 3),
~p = (2(b − 4), 6) if b ≡ 1 (mod 3) and
exceptional case of ~p = (12, 24) for ({3, 7}; 3)-S2.

For ({3, b ≥ 5}; 4)-S2: ~p=
(2b, 2), (4(b − 2), 4), (8(b − 3), 8).

For ({3, b ≥ 4}; 5)-S2: ~p = (6b, 2),
(4(3b− 5), 4), (5(3b− 6), 5), (10(3b− 8), 10), (20(3b− 9), 20)

Table presents lego-likeness data for smallest b in all above cases.



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

All hyperbolic lego-like ({a, b}; k)-S2 with a ≥ 3: examples

36 D2d (S4)

({5, 7}; 3-S2
44 D3(D3)

({5, 7}; 3-S2
68 T (T )

({5, 7}; 3-S2
16 D8h(D2d )

({4, 8}; 3-S2
32 Td (T )

({4, 8}; 3-S2

20 D2d (S4)

({4, 7}; 3-S2
44 Th(Th)

({4, 7}; 3-S2
12 D3h(D3)

({3, 9}; 3-S2
20 D2d (S4)

({3, 9}; 3-S2
14 D3h(D3)

({3, 8}; 3-S2

44 Th(T )

({3, 8}; 3-S2
20 D3d (D3d )

({3, 7}; 3-S2
68 T (T )

({3, 7}; 3-S2
22 D4h(D4h)

({3, 5}; 4-S2
32 D5d (S10)

({3, 4}; 5-S2



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Lego-like ({a, b}; k)-spheres with a≥3: synopsis

There are 4 elliptic ones and 4 infinite subseries: of parabolic series
({5, 6}; 3)-, ({4, 6}; 3)-, ({3, 6}; 3)-, ({3, 4}; 4)-S2. For hyperbolic:

All possible (a, k) are (5, 3), (4, 3), (3, 3), (3, 4) and (3, 5) with
any integer b > 2k

k−2 for each of possible five (a, k).

The number of such spheres is finite for each fixed b.

1 ≤ pa
pb
≤ 3b, except the case ~p = (12, 24) for ({3, 7}; 3)-S2.

pa
pb

=1 only in 3 cases with k=3; pa
pb

=2 only in 13 cases k=3, 4.
pa
pb

= 3b only for ({3, b}; 5)-S2; otherwise, pa
pb
≤ 2b.

Any lego-admissible ({a, b}; k)-S2 with pb=2≤a is lego-like.
All such lego-non-admissible ones are odd prisms and
({2, b}; k)-S2 with odd b(k−2)

2 . We list also all lego-like ones.



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Lego-like ({2, b}; k)-spheres: synopsis
There are 6 elliptic ones and 3 infinite subseries: of parabolic series
({2, 6}; 3)-, ({2, 4}; 4)-, ({2, 3}; 6)-S2. For hyperbolic ones:

There are double infinity of (b> 2k
k−2 , k) for lego-admissible,

but the number of such spheres is finite for each fixed (b, k).
It holds pb | 4k ; for k=3, all (2, 3, 4, 6, 12) are lego-admissible.

1 ≤ p2
pb
≤ b(k−2)

4 , except the cases ~p = (6, 12), (12, 36) for

({2, 7}; 3)-S2 and ~p = (14, 28), (28, 84) for ({2, 3}; 7)-S2.
({2, b}; k)-S2 with pb=4k, 2k , 4k3 , k is lego-agmissible iff,
resp., (b-2)(k-2)≡3, 2, 1, 0 (mod 4). Exp. of lego-like (b, pb)
are (3, 4k=16t+4), (3, 2k=8t), (4, 2k=4t+2), (4t+2, k=3).

12,D5d

{2, 4}; 5
(10, 10)

12,D5

({2, 4}; 5)-
(10, 10)

16,D7d

({2, 3}; 7)-
(14, 28)

10,D8h

({2, 3}; 8)-
(16, 16)

20,D9d

({2, 3}; 9)-
(36, 36)



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Lego-like ({1, b}; k)-spheres: synopsis

There are no parabolic ones. For elliptic: 3 and unique infinite
series ({1, 2}; k=4f +2)-S2, v=1, with ~p=(2, 2f ). For hyperbolic:

p1
pb
≤b-2, except ~p=(4, 2) for 1-vertex ({1, 3}; 10)-S2, and

1≤ p1
pb

, except 16 cases ({1, b}; k)-S2 with 2≤pb
p1
≤5.

For any b>2≤pb with even bpb, series ({1, b}; k=pb(b-1))-,
v=2, with ~p=(pb(b-2), pb). It is pb×K2 with added, inside of
each of pb 2-gons: b−2

2 and b−2
2 1-gons if b is even, or,

alternating, b−1
2 and b−3

2 1-gons if b is odd but pb is even.

For pa
pb

=1, 2, above series with b=3, 4 are unique infinite ones

1, C2ν

({1, 2}; k=10)-
~p=(2, 2k−2

4 )

2, D2

({1, 3}, k=8)-
~p=(k2 ,

k
2 )

2, D2d

({1, 3}, k=8)-
~p=(k2 ,

k
2 )



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Lego-admissible ({a, b}; k)-tori T2 and K2, P2

Any ({a, b}; k)-T2 has v= 2
k−2pa(pbpa +1) and, if pb>0, is hyperbolic

We have a< 2k
k−2≤ 6 and, for a≥3, it holds k< 2a

a−2 ≤ 6. For given
a, k , the number of triples (a, b; pa

pb
) with pa

pb
∈N is infinite (say,

({5, b}; 3)-T2 with p5=(b-6)pb), while with pb
pa
∈N it is finite (27).

The parameters of putative ({a, b}; k)-T2 with pb
pa
∈N, a ≥ 3. Also,

10 cases with a=2 (k=3, . . . , 8, 10) and 11 (3≤k≤14) with a=1.

k a,b v pb
pa

3 3,7 8p3 3
3 3,9 4p3 1
3 4,7 6p4 2
3 4,8 4p4 1
3 5,7 4p5 1
4 3,5 2p3 1

Lego-like maps ({a, b}; k) on the projective plane P2 and Klein
bottle K2 are the antipodal quotients of the centrally symmetric
lego-like maps ({a, b}; k) on S2 and T2, resp., having pa, pb ≥ 4.



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Lego-like ({3, b}; 3)-tori with pa
pb
≤ 2

3, 4, 5 are only possible a in a ({a, b}; 3)-torus with a ≥ 3.

k lego (pa, pb) v nbG/real. nbCases/real. nbCasesRed/real. Max./Min. total

3 373 (1,3) 8 1/1 30/8 17/8 8/8 8

3 373 (2,6) 16 6/6 30/29 17/17 34/9 145

3 373 (3,9) 24 5/5 30/17 17/12 21/5 66

3 373 (4,12) 32 153/128 30/30 17/17 58/1 1735

3 373 (5,15) 40 219/74 30/17 17/12 28/1 276

3 373 (6,18) 48 6625/2165 30/30 17/17 81/1 11007
3 39 (1,1) 4 1/1 1/1 1/1 1/1 1
3 39 (2,2) 8 1/1 1/1 1/1 2/2 2
3 39 (3,3) 12 5/5 1/1 1/1 4/2 12
3 39 (4,4) 16 21/20 1/1 1/1 6/2 60
3 39 (5,5) 20 36/28 1/1 1/1 8/2 110
3 39 (6,6) 24 180/132 1/1 1/1 18/2 741
3 39 (7,7) 28 574/315 1/1 1/1 31/2 2194
3 39 (8,8) 32 2561/1296 1/1 1/1 49/2 11821
3 39 (9,9) 36 9402/3703 1/1 1/1 78/2 40284

3 3212 (2,1) 6 1/1 6/2 6/2 2/2 2

3 3212 (4,2) 12 5/4 6/6 6/6 5/4 18

3 3212 (6,3) 18 14/12 6/4 6/4 4/1 21

3 3212 (8,4) 24 217/96 6/6 6/6 14/1 299

3 3212 (10,5) 30 245/60 6/5 6/5 4/1 89



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Lego-like ({4, b}; 3)-tori with pa
pb
≤ 2

k lego (pa, pb) v nbG/real. nbCases/real. nbCasesRed/real. Max./Min. total

3 472 (1,2) 6 0/0 6/0 4/0 N/A 0

3 472 (2,4) 12 4/4 6/6 4/4 13/4 32

3 472 (3,6) 18 8/8 6/6 4/4 8/3 45

3 472 (4,8) 24 48/46 6/6 4/4 25/1 569

3 472 (5,10) 30 114/98 6/6 4/4 18/1 676

3 472 (6,12) 36 692/581 6/6 4/4 69/1 7145

3 472 (7,14) 42 2751/2013 6/6 4/4 66/1 17983

3 472 (8,16) 48 16970/11117 6/6 4/4 226/1 131136
3 48 (1,1) 4 1/1 1/1 1/1 1/1 1
3 48 (2,2) 8 3/3 1/1 1/1 1/1 3
3 48 (3,3) 12 5/5 1/1 1/1 3/1 7
3 48 (4,4) 16 25/23 1/1 1/1 10/1 79
3 48 (5,5) 20 21/15 1/1 1/1 7/1 41
3 48 (6,6) 24 158/115 1/1 1/1 30/1 858
3 48 (7,7) 28 161/89 1/1 1/1 29/1 634
3 48 (8,8) 32 1619/905 1/1 1/1 100/1 13918
3 48 (9,9) 36 1768/719 1/1 1/1 100/1 11751
3 48 (10,10) 40 19891/8269 1/1 1/1 360/1 236964

3 4210 (2,1) 6 1/1 6/4 6/4 4/4 4

3 4210 (4,2) 12 4/3 6/6 6/6 8/6 22

3 4210 (6,3) 18 21/14 6/6 6/6 6/1 44

3 4210 (8,4) 24 90/39 6/6 6/6 21/1 226

3 4210 (10,5) 30 274/42 6/6 6/6 8/1 121

3 4210 (12,6) 36 2450/435 6/6 6/6 24/1 1819



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

Lego-like ({5, b}; 3)-tori with pa
pb
≤ 3

k lego (pa, pb) v nbG/real. nbCases/real. nbCasesRed/real. Max./Min. total
3 57 (1,1) 4 0/0 1/0 1/0 N/A 0
3 57 (2,2) 8 1/1 1/1 1/1 1/1 1
3 57 (3,3) 12 1/1 1/1 1/1 3/3 3
3 57 (4,4) 16 8/8 1/1 1/1 10/4 46
3 57 (5,5) 20 3/3 1/1 1/1 11/8 29
3 57 (6,6) 24 43/43 1/1 1/1 30/1 440
3 57 (7,7) 28 17/16 1/1 1/1 47/1 357
3 57 (8,8) 32 304/275 1/1 1/1 100/1 5866
3 57 (9,9) 36 229/191 1/1 1/1 234/1 8118
3 57 (10,10) 40 2698/2088 1/1 1/1 428/1 92030
3 57 (11,11) 44 2948/2109 1/1 1/1 829/1 154348
3 57 (12,12) 48 30625/19541 1/1 1/1 1514/1 1538904

3 528 (2,1) 6 1/1 6/4 5/4 4/4 4

3 528 (4,2) 12 4/4 6/6 5/5 9/6 31

3 528 (6,3) 18 10/8 6/6 5/5 7/2 37

3 528 (8,4) 24 46/46 6/6 5/5 28/1 370

3 528 (10,5) 30 118/65 6/6 5/5 17/1 228

3 528 (12,6) 36 670/414 6/6 5/5 75/1 2594

3 528 (14,7) 42 2613/763 6/6 5/5 58/1 3271

3 528 (16,8) 48 16162/4670 6/6 5/5 237/1 30743

3 539 (3,1) 8 0/0 30/0 18/0 N/A 0

3 539 (6,2) 16 4/4 30/27 18/18 35/12 108

3 539 (9,3) 24 7/6 30/15 18/12 12/1 27

3 539 (12,4) 32 120/94 30/30 18/18 57/1 1345

3 539 (15,5) 40 215/61 30/17 18/14 10/1 134

3 539 (18,6) 48 4601/1467 30/30 18/18 106/1 8673
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All but 1 ≤ 28-vertex azulenoids (({5, 7}; 3)-T2): lego-like

8, c2mm (p2)
~p=(2, 2)

12, p31m (p31m)
~p=(3, 3)

16, p2gg (p2gg)
~p=(4, 4)

20, cm (p1)
~p=(5, 5)

24, p31m (p3)
~p=(6, 6)

28, cm (cm)
~p=(7, 7)

32, p2gg (p2gg)
~p=(8, 8)

36, p3m1 (p3m1)
~p=(9, 9)

Representatives of unique kind of lego tiling of ({5, 7}; 3)-T2 with v ≤ 36
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({a, b}; k)-maps on
general surfaces
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(R , k)-maps on general surface F2

Given R ⊂ N and a surface F2, an (R, k)-F2 is a k-regular
map on surface F2 whose faces have gonalities i ∈ R.

The Euler characteristic χ(F2) is v -e+f =
∑

i piκi , where
κi=1+ i

k −
i
2 and pi is the number of i-gons. So, elliptic and,

with |R|>1, parabolic (R, k)-maps exist only on S2 and P2.

In fact, all connected closed (compact and without boundary)
irreducible surfaces F2 with χ(F2)≥0 are (with χ = 2, 0, 1, 0,
respectively): orientable: sphere S2, torus T2 and
non-orientable: real projective plane P2 and Klein bottle K2.

Again, let our (R, k)-maps be parabolic, i.e., mini∈R κi = 0.
Then M=:max{i ∈ R}= 2k

k−2 , and (M, k)=(6, 3), (4, 4), (3, 6).

Also, there are infinity of parabolic maps (R, k)-F2, since the
number pM of flat (κM=0) faces is not restricted.

Also, if χ(F2)=
∑

i piκi= 0, i.e. F2 is T2 or K2, then R={M}
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Parabolic ({a, b}; k)-maps on torus and Klein bottle

So, {a, b}; k)-T2 and ({a, b}; k)-K2 have a = b = 2k
k−2 and

(a = b, k) should be (6, 3), (3, 6) or (4, 4).

We consider only polyhedral maps, i.e. no loops or multiple edges
(1- or 2-gons), and any two faces intersect in edge, point or ∅ only.

Smallest such T2- and K2-maps for (a=b, k)=(4, 4), (6, 3), (3, 6):

as 4-regular quadrangulations: K5 and K2,2,2 (p4 = 5, 6);
as 6-regular triangulations: K7 and K3,3,3 (p3 = 14, 18);
as 3-regular polyhexes: Heawood graph (dual K7) and dual K3,3,3

(p6=7, 9). Two those graphs are the smallest T2- and K2-fullerenes
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Smallest T2- and K2-fullerenes: dual K7 and dual K3,3,3

3-regular polyhexes on T2, cylinder, Möbius surface, K2 are {63}’s
quotients by fixed-point-free group of isometries, generated by: two
translations, a transl., a glide reflection, transl. and glide reflection.
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8 parabolic families on the projective plane

(R, k)-maps on the projective plane are the antipodal quotients of
centrally symmetric (R, k)-S2; so, halving their p-vector and v .

The point symmetry groups with inversion operation are: Th, Oh,
Ih, Cmh,Dmh with even m and Dmd , S2m with odd m. So, they are

1 9 for {5, 6}v : Ci , C2h, D2h, D3d , D6h, S6, Th, D5d , Ih
2 7 for {2, 3}v : Ci , C2h, D2h, D3d , D6h, S6, Th

3 6 for {4, 6}v : Ci , C2h, D2h, D3d , D6h, Oh

4 6 for {3, 4}v : Ci , C2h, D2h, D3d , D4h, Oh

5 2 for {2, 4}v : D2h, D4h

6 1 for {3, 6}v : D2h

7 0 for {2, 6}v and {1, 3}v
8 Cf. 12 for icosahedrites (({3, 4}, 5)-spheres):

Ci , C2h, C4h, D2h, D4h, D3d , D5d , S6, S10, Th, Oh, Ih



General Parabolic ({a, b}; k)-maps on surfaces T2, K2, P2

6 parabolic families ({a, b}; k)-P2: 1-parameterization

1 {5, 6}v : Ci , C2h, D2h, S6, D3d , D6h, Th, D5d , Ih
2 {2, 3}v : Ci , C2h, D2h, S6, D3d , D6h, Th

3 {4, 6}v : Ci , C2h, D2h, D3d , D6h, Oh

4 {3, 4}v : Ci , C2h, D2h, D3d , D4h, Oh

5 {2, 4}v : D2h, D4h

6 {3, 6}v : D2h

({2, 3}, 6)-spheres Th and D6h are GCk,k(2×Tetrahedron) and, for
k ≡ 1, 2 (mod 3), GCk,0(6× K2), respectively. Other spheres of
blue symmetry are GCk,l with l = 0, k from the first such sphere.

So, each of 7 blue-symmetric families is described by one natural
parameter k and contains O(

√
v) spheres with at most v vertices.
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Petersen graph is the smallest projective plane’s fullerene

The smallest maps for ({a, b}; k)=({5, 6}, 3), ({3, 4}, 5), ({4, 6}, 3)
are: Petersen graph (dual K6), K6 (half-Icosahedron; smallest
P2-triangulation), K4 (smallest P2-quadrangulation), i.e., the
antipodal quotients of Dodecahedron, Icosahedron and Cube.
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Relatives: plane fullerenes,

azulenoids, schwartzites
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(Euclidean) plane fullerenes ({5, 6}, 3)-E2

An ({a, b}; k)-E2 is a k-regular tiling of E2 by a- and b-gons.

({a, b}; k)-E2 have pa ≤ b
b−a and pb =∞. It follows from

Alexandrov, 1958: any metric on E2 of non-negative curvature
can be realized as a metric of convex surface on E3. In fact,
consider plane metric such that all faces became regular in it.
Its curvature is 0 on all interior points (faces, edges) and ≥ 0
on vertices. A convex surface is at most half-S2.

There are ∞ of ({a, b}; k)-E2 if 2≤pa≤ b
b−a and 1 if pa=0, 1.

For plane fullerenes (or nanocones) ({5, 6}, 3)-E2, the number
of equivalence (isomorphic up to a finite induced subgraph)
classes is (Klein–Balaban, 2007) 2, 2, 2, 1 if p5=2, 3, 4, 5, resp.

Nanotubes (case p5=6) come by rolling up the graphite {63}.
There are 7 (with b=7, 7, 7, 7, 8, 8, 12) plane fulleroids, i.e.
({5, b}, 3)-E2, which are 2-isohedral (symmetry G ≈ Aut and
faces form 2 orbits under comb. automorphisms group Aut).
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Two other ({5, 6, c}, 3)-F2 used in Chemistry

Azulenoids: ({5, 6, 7}, 3)-T2; so, g=1, p5=p7 (Kirby–Diudea,
2003, et al.), since naftalen and azulen are C10H8 isomers.

Schwartzits: ({6, c ≥ 7}, 3)-F2 on minimal surfaces F2 of
const. negative curvature (g ≥ 2) (Terrones–MacKay, 1997).
Knor et al., 2015: such polyhedral ({6, c}, 3)-maps exist for
any g≥2, p6≥0 and c=7, 8, 9, 10; with 1 undecided subcase.
Analog of icos. fullerenes: ({6, 7}, 3)v on D-surface, g=3,
with v=56(p2+pq+q2), starting with Klein regular map {73}.
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c-disk fullerenes
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({5, 6, c}, 3)-spheres

Clearly, a v -vertex ({5, 6, c}, 3)-S2 is a fullerene if c = 5, 6 and
p5 = 12 + pc(c − 6), v = 20 + 2(p6 + pc(c − 5)), otherwise.

In Haeckel, 1887, skeletons of radiolarian zooplankton Aulonia
hexagona are represented by ({5, 6, 7}, 3)- and ({5, 6, 8}, 3)-
spheres. Same holds for some basket’s patterns.

The spherical Voronoi polyhedra of many energy potential
minimizers (say, in Thomson problem for v unit-charged
particles on sphere S2) and maximizers (say, in Tammes
problem of minimum distance between v points on S2) are
fullerenes or, for large v , specific ({5, 6, 7}, 3)-S2.

Behmaram, Doslic and Friedland, 2016, considered the
number of perfect matchings in ({5, 6, c}, 3)-S2 with pc = 2.

We will consider in depth the case pc = 1, i.e., when 5- and
6-gons tile a c-disk, instead of a sphere as fullerenes do.
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c-disk and c-multidisk fullerenes

Call a ({5,6,c},3)-S2, pc=1, c-disk-fullerene c-DF , if c-gon
not self-intersects and c-multidisk-fullerene c-MDF , else.

Any c-DF or c-MDF has p5=c+6, v=2(p6+c+ 5) and there
is an ∞ of c-DF ’s for any c≥1 and of c-MDF ’s for any c≥8

Possible symmetry groups of a c-DF with c 6=5, 6 or c-MDF :
Ck , Ckν with k ∈ {1, 2, 3, 5, 6} and k dividing c (symmetries
stabilize c-gon and axis pass by a vertex, edge or face),

8-MDF78(C2ν): min. 8-MDF and c-MDF with smallest c
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Fullerene c-disks: main notions

Fullerene c-polycycle: an c-gon partitioned into 5- and 6-gons
with vertices of degree 3 inside and 3 or 2 on the c-gon.

c-disk fullerene: full. c-polycycle without degree 2 vertices;
so, p5=p6+6. If c ∈ {5, 6}, it is a fullerene without a face.

Fullerene c-patch: fullerene c-polycycle, which is a fullerene’s
part; so, p5≤12. It is a c-disk fullerene if f c ∈ {5, 6}.
c-thimble fullerene: a 3-connected c-disk fullerene with only
5-gons adjacent to the c-gon. It exists if and only if c ≥ 5.
Smallest c-thimble has c − 6≤p6≤b3(c−5)2 c; conj.: =b3(c−5)2 c.
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Connectivity of c-disk fullerenes

Any c-MDF and 1-DF are 1-connected, but not 2-connected.

Any c-DF is 2-connected; only 2-connected exist iff c≥8.

Smallest such have p6=23, 17, 10, 8 for c=8, 9, 10, 11 and, for
c≥12, p6=4, 5, 6 if c≡ (mod 10)) to 4, 5, 6 or 2, 3, 7, 8 or 1, 9

Smallest 3-connected (i.e., polyhedral) ones have m(c) :=
p6=3, 2, 0, 1, 3, 4, 6, 7, 8 for 3≤c≤11 and (conj.) 6 for c≥12.

Conjecture: 3-connected c-DFv exists – except (c , v)=(1, 42),
(3, 24), (5, 22) – iff v is even and v ≥ 2(m(c) + c + 5).
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Minimal c-disk fullerenes

1 40, Cs 2 26, C2ν 3 22, C3ν 4 22, C2ν

6 24 D6d 7 30, Cs 13 48, Cs 14 50, C2

For v 6=13, 14 above are minimal, but minimal 13- and 14-DF are
2-connected and have p6=5, 4 respectively, i.e. less than 6 above.

Conjecture: for c≥13, minimal 3-connected c-disk is c-pentatube
B+Hex3+Penc−12+Hex3+B (symmetry Cs/C2 for odd/even c).

All minimal c-DF , 5≤c≤9, and a minimal 10-DF are c-thimbles.
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