Extended Family of Fullerenes and Lego-like Maps

Michel-Marie DEZA

Ecole Normale Superieure, Paris

This is a joint work with Mathieu DUTOUR SIKIRIĆ, Zagreb, presented at the 12-th Annual Meeting of the International Academy of Mathematical Chemistry and the 2016 International Conference on Mathematical Chemistry, July 4–8, 2016, TIANJIN

Overview

- 1 8 families of parabolic $({a, b}; k)$ -spheres
- 2 Listing of $(\{a, b\}; k)$ -spheres with small p_b
- 3 Symmetry groups of $(\{a, b\}; k)$ -spheres
- Goldberg–Coxeter construction and parameterizing
- **5** LEGO-LIKE ({*a*, *b*}; *k*)-SHERES AND TORI
- 6 Parabolic ($\{a, b\}; k$)-maps on surfaces \mathbb{T}^2 , \mathbb{K}^2 , \mathbb{P}^2
- Other relatives: plane fullerenes, azulenoids, schwartzites
- 8 c-disk fullerenes

Definition of a fullerene

A (geometric) fullerene F_v is a simple (i.e., 3-valent) polyhedron (putative carbon molecule) whose v vertices (carbon atoms) are arranged in $p_5 = 12$ pentagons and $p_6 = (\frac{v}{2} - 10)$ hexagons.

• F_v exist for all even $v \ge 20$ except v = 22. 1,0,1,1,2,3,6...,1812,...214127713,... isomers F_v for v = 20, 22, 24, 26, 28, 30, 32..., 60, ..., 200,Graphite lattice $\{6^3\}$ can be seen as "largest fullerene" F_∞ .

• Thurston, 1998, implies: the number of F_v grows as v^9 .

Definition of a fullerene

A (geometric) fullerene F_v is a simple (i.e., 3-valent) polyhedron (putative carbon molecule) whose v vertices (carbon atoms) are arranged in $p_5 = 12$ pentagons and $p_6 = (\frac{v}{2} - 10)$ hexagons.

- F_v exist for all even $v \ge 20$ except v = 22. 1,0,1,1,2,3,6...,1812,...214127713,... isomers F_v for v = 20, 22, 24, 26, 28, 30, 32..., 60, ..., 200,Graphite lattice $\{6^3\}$ can be seen as "largest fullerene" F_∞ .
- Thurston, 1998, implies: the number of F_v grows as v^9 .
- Only 4 Frank–Kasper fullerenes (having isolated hexagons): unique ones F_{20} , F_{24} , F_{26} and $F_{28}(T_d)$, one of two F_{28} . ∞ of IP fullerenes (isolated pentagons; denote such by C_v); the smallest is the truncated Icosahedron $C_{60}(I_h)$.
- Curl-Kroto-Smalley, 1985, synthesised it as carbon allotrope backminsterfullerene (Nobel Prize, 1996, in Chemistry). But Goldberg (1935, 1937) and rev. Kirkman, 1882: 80 of 89 F₄₄.

Original Goldberg–Coxeter construction

Any icosahedral fullerene (i.e., of symmetry I_h or I), has $v=20(p^2+pq+q^2)$ with $0 \le q \le p$; I_h for $p = q \ne 0$ and for q = 0. Below are cases of $C_{60}(I_h)$; (p,q)=(1,1), truncated Icosahedron, and $C_{80}(I_h)$; (p,q)=(2,0), chamfered Dodecahedron. Besides Dodecahedron, they are only icosahedral fullerenes with $v \le 80$.

This construction: parameterization by Eisenstein integer $p+q\omega$.

Extended family of fullerenes; main considered ones are:

- $(\{a, b\}; k)$ on \mathbb{S}^2 , \mathbb{P}^2 , \mathbb{T}^2 or \mathbb{K}^2 , i.e., k-valent maps with only a- and b-gonal faces, of curvature $1 + \frac{i}{k} - \frac{i}{2} \ge 0$ for i = a, b.
- *b*-icosahedrites, i.e., $(\{3, b\}, 5)$ - \mathbb{S}^2 with $b \ge 4$.
- G-fulleroids, i.e., $(\{5, b\}, 3)$ - \mathbb{S}^2 with b > 6 and symmetry G.
- c-disk-fullerenes, i.e., $({5,6,c},3)$ - \mathbb{S}^2 with $p_c = 1$.
- *c*-near-fullerenes ({5, 6, *c*}, 3)- \mathbb{S}^2 , with all 5- and *c*-gons forming min(12, p_c) lego (isomorphic disjoint clusters of faces) especially, lego-like fullerenes ({5,6},3)- \mathbb{S}^2 , with all faces forming min(p_5 , p_6) = min(12, p_6) legos.
- Azulenoids, i.e., $(\{5, 6, 7\}, 3)$ - \mathbb{T}^2 ; such tori have $p_5 = p_7$.
- Schwartzits, i.e., ({6,7},3)- and ({6,8},3)-maps of genus g ≥ 2 on minimal surfaces of constant negative curvature.
- Plane fullerenes, i.e., $(\{5,6\},3)$ - \mathbb{E}^2 ; such planes have $p_5 \leq 6$.
- Also, space fullerenes (\mathbb{E}^3 -tilings by fullerenes) and fullerene manifolds (manifolds whose 2-faces are only 5- or 6-gonal).

Main considered properties of those maps

- Usual ones: symmetries, computer enumeration (when feasible), generation, connectivity and so on.
- Parameterization by complex numbers, esp. Goldberg–Coxeter construction (1-parameter case) using rings Z[ω] and Z[i].
- By analogy with v-, p-vectors enumerating map's vertices and faces, edges are represented by z-vector enumerating zigzags (left-right circuits doubly covering edge-set). Main interesting cases: knot (unique zigzag), pure (no zigzag self-intersects) and tight (no railroad, i.e. pair of "parallel" zigzags) maps. Similar theory is build for central circuits of even-valent maps.

This material, except lego-like and near-parabolic maps, to appear, is presented in our books: M.Deza and M.Dutour Sikirić, *Geometry of Chemical Graphs*, Cambridge University Press, 2008, and M.Deza, M.Dutour Sikirić and M.Shtogrin, *Geometric Structure of Chemistry-relevant Graphs*, Springer, 2015.

Fullerenes and other 7 families of parabolic ({a, b}; k)-spheres

(R, k)-spheres: curvature $\kappa_i = 1 + \frac{i}{k} - \frac{i}{2}$ of *i*-gons

- Fix R ⊂ N. An (R, k)-sphere is a k-regular, k ≥ 3, map on S² whose faces are i-gons, i ∈ R. Let m=min and M=max_{i∈R} i.
- Let v, e and $f = \sum_{i} p_{i}$ be the map's numbers of vertices, edges and faces, where p_{i} is the number of *i*-gonal faces. So, $kv=2e=\sum_{i} ip_{i}$ and Euler formula v - e + f = 2 become $2=\sum_{i} p_{i}\kappa_{i}$, where $\kappa_{i}=1+\frac{i}{k}-\frac{i}{2}$ is the curvature of *i*-gons.
- $\kappa_m \ge 0$ implies $m < \frac{2k}{k-2}$; so, $m \ge 3$, implies $3 \le m, k \le 5$, i.e. 5 Platonic parameters (m, k) = (3, 3), (4, 3), (3, 4), (5, 3), (3, 5).

(R, k)-spheres: curvature $\kappa_i = 1 + \frac{i}{k} - \frac{i}{2}$ of *i*-gons

- Fix R ⊂ N. An (R, k)-sphere is a k-regular, k ≥ 3, map on S² whose faces are i-gons, i ∈ R. Let m=min and M=max_{i∈R} i.
- Let v, e and $f = \sum_{i} p_{i}$ be the map's numbers of vertices, edges and faces, where p_{i} is the number of *i*-gonal faces. So, $kv=2e=\sum_{i} ip_{i}$ and Euler formula v - e + f = 2 become $2=\sum_{i} p_{i}\kappa_{i}$, where $\kappa_{i}=1+\frac{i}{k}-\frac{i}{2}$ is the curvature of *i*-gons.
- $\kappa_m \ge 0$ implies $m < \frac{2k}{k-2}$; so, $m \ge 3$, implies $3 \le m, k \le 5$, i.e. 5 Platonic parameters (m, k) = (3, 3), (4, 3), (3, 4), (5, 3), (3, 5).
- (R, k)-sphere is elliptic if M<^{2k}/_{k-2}, i.e., min_{i∈R} κ_i > 0; then either 1) k = 3, M ≤ 5, or 2) k ∈ {4,5}, M ≤ 3. So, for m ≥ 3, such are only Octahedron, Icosahedron and 10 ({3,4,5},3)-spheres: 8 dual deltahedra and the Cube's truncations on 1 or 2 opposite vertices (Dürer octahedron). In other words, five Platonic and seven ({3,4,5},3)-spheres.

Parabolic (R, k)-spheres

- (R, k)-sphere is parabolic if M=^{2k}/_{k-2}, i.e. min_{i∈R} κ_i=0. So, (M, k)=(6,3), (4,4), (3,6) (Euclidean parameter pairs). Exclusion of *i*-faces with κ_i<0 simplifies enumeration, while number p_M of flat (κ_M=0) M-gonal faces not being restricted, there is an infinity of such (R, k)-spheres.
- The number of such v-vertex (R, k)-spheres with |R|=2 increases polynomially with v.
 Such spheres admit parametrization and description in terms of rings of (*Gaussian* if k=4 and *Eisenstein* if k=3,6) integers.
- (R, k)-sphere is hyperbolic if M>^{2k}/_{k-2}, i.e. min_{i∈R} κ_i<0; it do not admit above, in general. We considered only simplest cases, say: icosahedrites, i.e. ({3,4},5)-spheres, and special ({a, b, c}; k)-spheres: those with p_b = 0 or p_c = 0, p_b ≤ 3 or p_c = 1 or a- and c-gons forming disjoint isomorphic clusters).

(R, k)-maps on general surface \mathbb{F}^2

- Given R ⊂ N and a surface F², an (R, k)-F² is a k-regular map on surface F² whose faces have gonalities i ∈ R.
- The Euler characteristic χ(𝔽²) is v-e+f = Σ_i p_iκ_i, where κ_i=1+ⁱ/_k ⁱ/₂ and p_i is the number of *i*-gons. So, elliptic and, with |R|>1, parabolic (R, k)-maps exist only on S² and ℙ².
- In fact, all connected *closed* (compact and without boundary) irreducible surfaces P² with χ(P²)≥0 are (with χ = 2,0,1,0, respectively): orientable: sphere S², torus T² and non-orientable: real projective plane P² and Klein bottle K².

(R, k)-maps on general surface \mathbb{F}^2

- Given R ⊂ N and a surface F², an (R, k)-F² is a k-regular map on surface F² whose faces have gonalities i ∈ R.
- The Euler characteristic χ(F²) is v-e+f = ∑_i p_iκ_i, where κ_i=1+ⁱ/_k ⁱ/₂ and p_i is the number of *i*-gons. So, elliptic and, with |R|>1, parabolic (R, k)-maps exist only on S² and P².
- In fact, all connected *closed* (compact and without boundary) irreducible surfaces 𝔽² with χ(𝔽²)≥0 are (with χ = 2,0,1,0, respectively): orientable: sphere 𝔇², torus 𝔼² and non-orientable: real projective plane 𝒫² and Klein bottle 𝑢².
- Again, let our (R, k)-maps be parabolic, i.e., $\min_{i \in R} \kappa_i = 0$. Then $M =: \max\{i \in R\} = \frac{2k}{k-2}$, and (M, k) = (6, 3), (4, 4), (3, 6).
- Also, there are infinity of parabolic maps (R, k)-F², since the number p_M of *flat* (κ_M=0) faces is not restricted.
- Also, if $\chi(\mathbb{F}^2) = \sum_i p_i \kappa_i = 0$, i.e. \mathbb{F}^2 is \mathbb{T}^2 or \mathbb{K}^2 , then $R = \{M\}$

8 families of parabolic $(\{a, b\}; k)$ -spheres

- An $(\{a, b\}; k)$ -sphere is an (R, k)-sphere with $R = \{a, b\}$, $1 \le a < b$. It has $v = \frac{1}{k}(ap_a + bp_b)$ vertices.
- Such parabolic sphere has $b = \frac{2k}{k-2}$; so, (b,k) = (6,3), (4,4), (3,6) and Euler formula become $2 = \kappa_a p_a = (1 + \frac{a}{k} \frac{a}{2})p_a = (1 \frac{a}{b})p_a$.
- So, p_a = ^{2b}/_{b-a} and all possible (a, p_a) are: (5,12), (4,6), (3,4), (2,3) for (b, k)=(6,3); (3,8), (2,4) for (b, k)=(4,4); (2,6), (1,3) for (b, k)=(3,6).
- Those 8 families can be seen as spheric analogs of the regular plane partitions {6³}, {4⁴}, {3⁶} with p_a disclinations ("defects") κ_a added to get the curvature 2 of the sphere.

8 parabolic families: existence criterions

Grűnbaum–Motzkin, 1963: criterion for $k=3 \le a$; Grűnbaum, 1967: for ({3,4},4)-spheres; Grűnbaum–Zaks, 1974: for a = 1, 2.

k	(a, b)	smallest one	it exists if and only if	pa	V	Ord	Gr
3	(5,6)	Dodecahedron	$p_6 eq 1$	12	20+2 <i>p</i> ₆	v ⁹	28
3	(4,6)	Cube	$p_6 eq 1$	6	8+2 <i>p</i> ₆	v^3	16
4	(3,4)	Octahedron	$p_4 eq 1$	8	$6+p_4$	v^5	18
6	(2,3)	Bundle ₆ = $6 \times K_2$	<i>p</i> ₃ is even	6	$2 + \frac{p_3}{2}$	v ⁴	22
3	(3,6)	Tetrahedron	p ₆ is even	4	4+2 <i>p</i> ₆	v	5
4	(2,4)	Bundle ₄ = $4 \times K_2$	<i>p</i> ₄ is even	4	2+ <i>p</i> ₄	v	5
3	(2,6)	Bundle ₃ = $3 \times K_2$	$p_6 = (k^2 + kl + l^2) - 1$	3	2+2 <i>p</i> ₆	v	2
6	(1,3)	Trifolium	$p_3=2(k^2+kl+l^2)-1$	3	$\frac{1+p_3}{2}$	v	3
5	(3,4)	Icosahedron	$p_4 eq 1$	$2p_4+20$	2 <i>p</i> ₄ +12	exp	38
<u> </u>	(-,-)		r / -	1.4.1.44	1.4.1.==		

8 families of parabolic $(\{a, b\}; k)$ -spheres

- Let us denote $(\{a, b\}; k)$ -sphere with v vertices by $\{a, b\}_v$.
- ({5,6},3)- and ({4,6},3)-spheres are models of molecules of (chemical) fullerenes and boron nitrides., respectively.
- ({*a*, *b*}, 4)-spheres are minimal projections of alternating links, whose components are their *central circuits* (those going only ahead) and crossings are the vertices.
- Bundle_m is $m \times K_2$. Trifolium $\{1,3\}_1$ is the 3-rose $3 \times (aa)$.
- *b*-icosahedrites (({3, b}, 5)-spheres) are hypebolic if b>3, $p_b>0$, since $p_3=p_b(3b-10)+20$ and $\kappa_b=\frac{10-3b}{10b}<0$.

Generation of 4 simplest parabolic $(\{a, b\}; k)$ -spheres

- ({3,6},3)- (Grűnbaum–Motzkin, 1963) and ({2,4},4)-spheres (Deza–Shtogrin, 2003) admit a 2-parametric description (by 2 complex numbers) and also a description by 3 integers.
- 1-parametric description: ({2,6},3)-spheres are given by the *Goldberg–Coxeter construction* from Bundle₃ {2,6}₂=3×K₂.
- ({1,3},6)-spheres come by this construction (extended on 6-regular spheres) from Trifolium {1,3}₁=3×(aa).
- ({2,3},6)-spheres, except of 6 × K₂ and 3 × K₃, are the duals of ({3,4,5,6},3)-spheres with six new vertices put on edges. Example: ({5,6},3)-spheres with 5-gons organized in 6 pairs.
- ({1,2,3},6)-spheres with v>3, except of 5 infinite series, are the duals of ({3,4,5,6},3)-S² with splitting (into a 2-gon or into a 2-gon, enclosing a 1-gon) of some edges.

Parabolic ({a, b}; k)-maps on surfaces \mathbb{T}^2 , \mathbb{K}^2 , \mathbb{P}^2

First four $(\{4, 6\}, 3)$ - and $(\{5, 6\}, 3)$ -spheres (fullerenes)

General

First four $(\{2,6\},3)$ - and $(\{3,6\},3)$ -spheres

Number of $(\{2,6\}_v$'s is nr. of representations $v=2(k^2+kl+l^2)$, $0 \le l \le k$ $(GC_{k,l}(\{2,6\}_2))$. It become 2 for $v=7^2=5^2+15+3^2$.

First four $(\{2,4\},4)$ - and $(\{3,4\},4)$ -spheres

Above links/knots are given in Rolfsen, 1976 and 1990, notation. Herschel graph: smallest non-Hamiltonian polyhedral graph. General

Parabolic $(\{a, b\}; k)$ -maps on surfaces \mathbb{T}^2 , \mathbb{K}^2 , \mathbb{P}^2

First four $(\{2,3\},6)$ - and $(\{1,3\},6)$ -spheres

 C_{3v} (3)

 $C_{3h}(3;6)$

 D_{2d} (2²; 8)

C₃ (21)

 T_d (3⁴)

$(\{a, b\}; k)$ -spheres with $p_b \leq 3$: listings

$(\{a, b\}; k)$ -spheres with $p_b \leq 2 < a < b$

- Remind: (a, k)=(3,3), (4,3), (3,4), (5,3), (3,5) if k, a ≥ 3.
- The only ({a, b}; k)-spheres with p_b ≤ 1 are 5 Platonic (a^k): Tetrahedron, Cube (Prism₄), Octahedron (APrism₃), Dodecahedron (snub Prism₅), Icosahedron (snub APrism₃).
- There exists unique trivial 3-connected ({a, b}; k)-sphere with p_b=2 for ({4, b}, 3)-, ({3, b}, 4)-, ({5, b}, 3)-, ({3, b}, 5)-: D_{bh} Prism_b and D_{bd} APrism_b, snub Prism_b, snub APrism_b: two b-gons separated by b-ring of 4-gons, 2b-ring of 3-gons, two b-rings of 5-gons, two 3b-rings of 3-gons.
- Also, for $t \ge 2$, 10 non-trivial ({a, at}; k)-spheres with $p_{at}=2$: 5 ({a, ta}; k)-spheres are (D_{th}) necklaces of polycycles { a^k }-e; 3 are (D_{th}) necklaces of t v-split { 3^4 } and e-split { 5^3 }, { 3^5 }; ({3,3t},5)-spheres C_{th} , D_t are necklaces of t v-, f-split { 3^5 }.

$(\{a, b=ta\}; k)$ -spheres with $p_b=2 < a, k=3, 4, 5;$ case t=2

D_{2h}: a=3 a=4a=5 a=5

 $a=3 D_{2h}$ $a=3 D_{2h}$

 $a=3 D_{2h}$ $a=3 D_{2h}$ $a=3 C_{2h}$

 $a=3 D_2$

Proof method: elementary (a, k)-polycycles

- A (a, k)-polycycle is a 2-connected plane graph with faces partitioned in a-gonal proper faces and holes, exterior face among them, so that vertex degrees are in {2,...,k} and can be < k only for a vertex lying on the boundary of a hole.
- Any (*a*, *k*)-polycycle decomposes uniquely along its bridges (non-boundary going hole-to-hole, possibly, same, edges) into elementary ones. Cf. integer factorisation into primes.
- We listed them for $\kappa_a = 1 + \frac{a}{k} \frac{a}{2} \ge 0$. Othervise, continuum.

This $({5,15},3)$ -sphere with $p_{15}=3$ is a 3-holes $({5},3)$ -polycycle It decomposes into five 1-hole elementary $({5}; k)$ -polycycles.

$(\{a, b\}, 3)$ -spheres with $p_b = 3 \le a$

- ({a, b}; k)-sphere with p_b = 3≤ a exists if and only if b ≡ 2, a, 2a - 2 (mod 2a) and b ≡ 4, 6 (mod 10) if a=5.
- There are 7 such spheres with $t = \lfloor \frac{b}{6} \rfloor = 0$ and 3+4+5+17 of them for any $t \ge 1$.
- Such sphere are unique if b is not ≡ a (mod 2a) and then their symmetry is D_{3h}, except (a, k) = (3,5), when it is D₃.

$(\{a, b\}, k)$ -spheres with a = 1, 2 and $p_b = 1$

- There are no $(\{a, b\}; k)$ -spheres with $a \ge 2$, having $p_b = 1$.
- The only ({1, b}; k)-spheres with p_b=1 are: 1-vertex b-foliums (K₁ with b 1-gons); so, k=2b≥4, p₁=b and 2-vertex b-dumbbells (K₂ with b-2/2 1-gons on each vertex); so, having odd k=b-1≥3 and p₁=b-2.
 2-folium and 4-dumbbell are elliptic, 3-folium is parabolic.

$(\{a, b\}, k)$ -spheres with a = 1, 2 and $p_b = 2$

- An ({2, b}; k)-S² with p_b=2 exists if and only if bk is even, and then it has p=(^{b(k-2)}/₂, 2) and v=b vertices. It is either, for odd b, b-cycle with edges repeated ^k/₂ times; or, for even b and any integer m ∈ [1, ^k/₂], b-cycle with edges repeated, alternatively, m and k m times.
 An ({1, b}; k)-sphere with p_b=2 exists iff v=^{4b}/_{k+2}∈N, and
 - then it has v vertices and $\vec{p} = (2(b v), 2)$. It is either, for k = 3, a $\frac{2b}{5}$ -cycle with matches from each cycle's vertex, so that the same number of them goes inside and outside. or, for $k \ge 4$, a $\frac{4b}{k+2}$ -cycle with $\frac{k-2}{2}$ 1-gons from each vertex, so that the same number of them goes inside and outside.

Symmetry groups of ({*a*, *b*}; *k*)-spheres

Finite isometry groups

All finite groups of isometries of 3-space \mathbb{E}^3 are classified. In Schoenflies notations, they are:

- C₁ is the trivial group
- C_s is the group generated by a plane reflexion
- $C_i = \{I_3, -I_3\}$ is the inversion group
- C_m is the group generated by a rotation of order m of axis Δ
- C_{mv} (\simeq dihedral group) is the group generated by C_m and m reflexion containing Δ
- $C_{mh} = C_m \times C_s$ is the group generated by C_m and the symmetry by the plane orthogonal to Δ
- S_{2m} is the group of order 2m generated by an antirotation, i.e. commuting composition of a rotation and a plane symmetry

Finite isometry groups D_m , D_{mh} , D_{md}

- D_m (\simeq dihedral group) is the group generated of C_m and m rotations of order 2 with axis orthogonal to Δ
- D_{mh} is the group generated by D_m and a plane symmetry orthogonal to Δ
- D_{md} is the group generated by D_m and m symmetry planes containing Δ and which does not contain axis of order 2

Remaining 7 finite isometry groups

- $I_h = H_3$ is the group of isometries of Dodecahedron; $I_h \simeq A l t_5 \times C_2$
- $I \simeq A l t_5$ is the group of rotations of Dodecahedron
- $O_h = B_3$ is the group of isometries of Cube
- $O \simeq Sym(4)$ is the group of rotations of Cube
- $T_d = A_3 \simeq Sym(4)$ is the group of isometries of Tetrahedron
- $T \simeq Alt(4)$ is the group of rotations of Tetrahedron
- $T_h = T \cup -T$

While (point group) $Isom(P) \subset Aut(G(P))$ (combinatorial group), Mani, 1971: for any 3-polytope P, there is a map-isomorphic 3-polytope P' (so, with the same skeleton G(P') = G(P)), such that the group Isom(P') of its isometries is isomorphic to Aut(G).

8 parabolic families: symmetry groups

- **2**8 for $\{5,6\}_{\nu}$: C_1 , C_s , C_i ; C_2 , $C_{2\nu}$, C_{2h} , S_4 ; C_3 , $C_{3\nu}$, C_{3h} , S_6 ; D_2 , D_{2h} , D_{2d} ; D_3 , D_{3h} , D_{3d} ; D_5 , D_{5h} , D_{5d} ; D_6 , D_{6h} , D_{6d} ; T, T_d , T_h ; I, I_h (Fowler–Manolopoulos, 1995)
- **2** 16 for $\{4, 6\}_{v}$: C_1 , C_s , C_i ; C_2 , C_{2v} , C_{2h} ; D_2 , D_{2h} , D_{2d} ; D_3 , D_{3h} , D_{3d} ; D_6 , D_{6h} ; O, O_h (Deza-Dutour, 2005)
- **5** for $\{3, 6\}_{v}$: D_2 , D_{2h} , D_{2d} ; T, T_d (Fowler-Cremona, 1997)
- I for {2,6}_v: D₃, D_{3h} (Grünbaum–Zaks, 1974)
- **(a)** 18 for $\{3, 4\}_{\nu}$: C_1 , C_s , C_i ; C_2 , $C_{2\nu}$, C_{2h} , S_4 ; D_2 , D_{2h} , D_{2d} ; D_3 , D_{3h} , D_{3d} ; D_4 , D_{4h} , D_{4d} ; O, O_h (Deza-Dutour-Shtogrin, 2003)
- **5** for $\{2,4\}_{v}$: D_2 , D_{2h} , D_{2d} ; D_4 , D_{4h} , all in $[D_2, D_{4h}]$ (same)
- **3** for $\{1,3\}_{\nu}$: C_3 , $C_{3\nu}$, C_{3h} (Deza–Dutour, 2010)
- **3** 22 for $\{2,3\}_{\nu}$: C_1 , C_s , C_i ; C_2 , $C_{2\nu}$, C_{2h} , S_4 ; C_3 , $C_{3\nu}$, C_{3h} , S_6 ; D_2 , D_{2h} , D_{2d} ; D_3 , D_{3h} , D_{3d} ; D_6 , D_{6h} ; T, T_d , T_h (same)

38 for icosahedrites $(\{3,4\},5)$ - (same, 2011).

8 families: Goldberg–Coxeter construction $GC_{k,l}(.)$

With $\mathbf{T} = \{T, T_d, T_h\}$, $\mathbf{O} = \{O, O_h\}$, $\mathbf{I} = \{I, I_h\}$, $\mathbf{C}_1 = \{C_1, C_s, C_i\}$, $\mathbf{C}_{\mathbf{m}} = \{C_m, C_{mv}, C_{mh}, S_{2m}\}$, $\mathbf{D}_{\mathbf{m}} = \{D_m, D_{mh}, D_{md}\}$, we get

- **1** for $({5,6},3)$ -: C₁, C₂, C₃, D₂, D₃, D₅, D₆, T, I
- **a** for $(\{2,3\},6)$ -: C₁, C₂, C₃, D₂, D₃, $\{D_6, D_{6h}\}$, T
- **6** for $(\{4, 6\}, 3)$ -: C₁, C₂\S₄, D₂, D₃, $\{D_6, D_{6h}\}$, **0**
- for $(\{3,4\},4)$ -: C₁, C₂, D₂, D₃, D₄, O
- **5** for $(\{3,6\}, 3-: D_2, \{T, T_d\}, \{D_3, D_{3h}\}$
- **6** for $(\{2,4\},4)$ -: **D**₂, $\{D_4, D_{4h}\}$
- for $(\{2,6\},3)$ -: $D_3 \setminus D_{3d} = \{D_3, D_{3h}\}$
- **6** for $(\{1,3\},6)$ -: $C_3 \setminus S_6 = \{C_3, C_{3\nu}, C_{3h}\}$

if $(\{3,4\},5)$ -: C₁, C₂, C₃, C₄, C₅, D₂, D₃, D₄, D₅, T, O, I.

8 families: Goldberg–Coxeter construction $GC_{k,l}(.)$

With $\mathbf{T} = \{T, T_d, T_h\}$, $\mathbf{O} = \{O, O_h\}$, $\mathbf{I} = \{I, I_h\}$, $\mathbf{C}_1 = \{C_1, C_s, C_i\}$, $\mathbf{C}_{\mathbf{m}} = \{C_m, C_{mv}, C_{mh}, S_{2m}\}$, $\mathbf{D}_{\mathbf{m}} = \{D_m, D_{mh}, D_{md}\}$, we get

- **1** for $({5,6},3)$ -: C₁, C₂, C₃, D₂, D₃, D₅, D₆, T, I
- **a** for $(\{2,3\},6)$ -: C₁, C₂, C₃, D₂, D₃, $\{D_6, D_{6h}\}$, T
- **6** for $(\{4, 6\}, 3)$ -: C₁, C₂\S₄, D₂, D₃, $\{D_6, D_{6h}\}$, **0**
- for $({3,4}, 4)$ -: C_1 , C_2 , D_2 , D_3 , D_4 , O
- **5** for $(\{3,6\}, 3-: D_2, \{T, T_d\}, \{D_3, D_{3h}\}$
- **6** for $(\{2,4\},4)$ -: **D**₂, $\{D_4, D_{4h}\}$
- for $(\{2,6\},3)$ -: $D_3 \setminus D_{3d} = \{D_3, D_{3h}\}$
- **6** for $(\{1,3\},6)$ -: $C_3 \setminus S_6 = \{C_3, C_{3\nu}, C_{3h}\}$

if $(\{3,4\},5)$ -: **C**₁, **C**₂, **C**₃, **C**₄, **C**₅, **D**₂, **D**₃, **D**₄, **D**₅, **T**, **O**, **I**. Spheres of blue symmetry are $GC_{k,l}$ from 1st such; so, given by one complex (Gaussian for k=4, Eisenstein for k=3,6) parameter. Goldberg, 1937 and Coxeter, 1971: $\{5,6\}_{v}(I, I_{h}), \{4,6\}_{v}(O, O_{h}),$ $\{3,6\}_{v}(T, T_{d})$. Dutour-Deza, 2004 and 2010: for other cases. Goldberg–Coxeter construction and parameterizing
Goldberg–Coxeter (1 parameter) construction $GC_{k,l}(.)$

- Take a 3- or 4-regular plane graph *G*. The faces of dual graph *G*^{*} are triangles or squares, respectively.
- Break each face into pieces according to parameter (k, l).
 Master polygons below have area A(k²+kl+l²) or A(k²+l²), where A is the area of a small polygon.

Gluing the pieces together in a coherent way

 Gluing the pieces so that, say, 2 non-triangles, coming from subdivision of neighboring triangles, form a small triangle, we obtain another triangulation or quadrangulation of the plane.

- The dual is a 3- or 4-regular plane graph, denoted GC_{k,l}(G); we call it Goldberg–Coxeter construction.
- It works for any 3- or 4-regular map on oriented surface.

$GC_{k,l}(Cube)$ for (k, l) = (1, 0), (1, 1), (2, 0), (2, 1)

Goldberg-Coxeter construction from Octahedron

The case (k, l) = (1, 1) of $GC_{k,l}(G)$

The case (k, l) = (k, 0) of $GC_{k,l}(G)$: k-inflation

Chamfering (quadrupling) $GC_{2,0}(G)$ of smallest ({a, b}; k)-spheres, (a, b)=(2, 6), (3, 6), (4, 6), (5, 6) and (2, 4), (3, 4), (1, 3), (2, 3), are:

General

Parabolic $(\{a, b\}; k)$ -maps on surfaces \mathbb{T}^2 , \mathbb{K}^2 , \mathbb{P}^2

First four $GC_{k,l}(4 \times K_2)$ and $GC_{k,l}(6 \times K_2)$

First four $GC_{k,l}(3 \times K_2)$ and $GC_{k,l}(Trifolium = 3 \times (aa))$

All ({2,6},3)-spheres are $G_{k,l}(3 \times K_2)$: D_{3h} , D_{3h} , D_3 if l=0, k, else.

All ({1,3},6)-spheres are $G_{k,l}(3 \times (aa))$: $C_{3\nu}$, C_{3h} , C_3 if l=0, k, else

Plane tilings $\{4^4\}$, $\{3^6\}$ and complex rings $\mathbb{Z}[i]$, $\mathbb{Z}[\omega]$

- The vertices of regular plane tilings {4⁴} and {3⁶} form each, convenient algebraic structures: lattice and ring. Path-metrics of those graphs are *l*₁- 4-*metric* and *hexagonal* 6-*metric*, resp.
- {4⁴}: square lattice \mathbb{Z}_2 and ring $\mathbb{Z}[i] = \{z = k + li : k, l \in \mathbb{Z}\}$ of Gaussian integers with norm $N(z) = z\overline{z} = k^2 + l^2 = ||(k, l)||^2$.
- {3⁶}: hexagonal lattice $A_2 = \{x \in \mathbb{Z}_3 : x_0 + x_1 + x_2 = 0\}$ and ring $\mathbb{Z}[\omega] = \{z = k + lw : k, l \in \mathbb{Z}\}$, where $\omega = e^{i\frac{\pi}{3}} = \frac{1}{2}(1 + i\sqrt{3})$, of Eisenstein integers with norm $N(z) = z\overline{z} = k^2 + kl + l^2 = ||(k, l)||^2$. We identify points $x = (x_0, x_1, x_2) \in A_2$ with $x_0 + x_1\omega \in \mathbb{Z}[\omega]$.
- Both, $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$ are unique factorization rings.
- A natural number $n = \prod_i p_i^{\alpha_i}$ is of form $n = k^2 + l^2$ iff any α_i is even, whenever $p_i \equiv 3 \pmod{4}$ (Fermat Theorem). It is of form $n = k^2 + kl + l^2$ if and only if $p_i \equiv 2 \pmod{3}$.
- The first cases of non-unicity with $gcd(k, l)=gcd(k_1, l_1)=1$ are $91=9^2+9+1^2=6^2+30+5^2$ and $65=8^2+1^2=7^2+4^2$. The first cases with l=0 are $7^2=5^2+15+3^2$ and $5^2=4^2+3^2$.

The bilattice of vertices of hexagonal plane tiling $\{6^3\}$

- We identify again the *hexagonal lattice* A₂ of the vertices of the plane tiling {3⁶} with *Eisenstein ring* Z[ω].
- The hexagon centers of $\{6^3\}$ form $\{3^6\}$. Also, with vertices of $\{6^3\}$, they form $\{3^6\}$, rotated by 90° and scaled by $\frac{1}{3}\sqrt{3}$.
- The complex coordinates of vertices of {6³} are given by vectors v₁=1 and v₂=ω. The lattice L=ℤv₁+ℤv₂ is ℤ[ω].
- The vertices of {6³} form bilattice L₁ ∪ L₂, where the bipartite complements, L₁=(1+ω)L and L₂=1+(1+ω)L, are stable under multiplication. Using this,

 $GC_{k,l}(G)$ for 6-regular graph G can be defined similarly to 3- and 4-regular case, but only for $z=k+l\omega\in L_2$, i.e. $k \equiv l \pm 1 \pmod{3}$. If $z \in L_1$, then $z=(1+\omega)s(k'+l'\omega)\omega$, where $k' \equiv l \pm 1' \pmod{3}$ and $s\geq 0$. Then $GC_{k,l}(G):=G_{k',l'}(Or^s(G))$ via oriented tripling $Or(G):=GC_{1,1}$, defined using vertex 2-coloring of bipartition of G^* .

Goldberg-Coxeter operation in ring terms

	3-regular G	4-regular G	6-regular G
the tiling	{3 ⁶ }	$\{4^4\}$	$\{6^3\}$
the lattice	A ₂	Z_2	bilattice $L_1 \cup L_2$
the ring	Eisenstein $\mathbb{Z}[\omega]$	Gaussian $\mathbb{Z}[i]$	Eisenstein $\mathbb{Z}[\omega]$
Euler formula	$\sum_{i}(6-i)p_{i}=12$	$\sum_i (4-i)p_i = 8$	$\sum_i (3-i)p_i = 6$
curvature 0	hexagons	quadrangles	triangles
$GC_{11}(G)$	leapfrog graph	medial graph	oriented tripling

Goldberg-Coxeter operation in ring terms

	3-regular G	4-regular G	6-regular G
the tiling	{3 ⁶ }	$\{4^4\}$	$\{6^3\}$
the lattice	A ₂	Z_2	bilattice $L_1 \cup L_2$
the ring	Eisenstein $\mathbb{Z}[\omega]$	Gaussian $\mathbb{Z}[i]$	Eisenstein $\mathbb{Z}[\omega]$
Euler formula	$\sum_{i}(6-i)p_{i}=12$	$\sum_i (4-i)p_i = 8$	$\sum_i (3-i)p_i = 6$
curvature 0	hexagons	quadrangles	triangles
$GC_{11}(G)$	leapfrog graph	medial graph	oriented tripling

- If GC_z(G):=GC_{k,l}(G), then GC_z(GC_{z'}(G))=GC_{zz'}(G), i.e. in ring terms, GC_z(G) corresponds to scalar multiplication by z. Example: GC_{2k²,0}(G)=GC_{k,k}(GC_{k,k}(G)) by (k+ki)²=2k²i.
- G has v vertices, then $GC_{k,l}(G)$ has vN(z) vertices.
- GC_z(G) has all rotational symmetries of G in 3- and 4-regular case, and all symmetries if I=0, k in general case.
- $GC_z(G) = GC_{\overline{z}}(\overline{G})$, where \overline{G} differs by a plane symmetry only.

Parameterizing parabolic ($\kappa_b = 0$) ({a, b}; k)-spheres

Thurston, 1993, implies: $(\{a, b\}; k)$ -spheres have p_a -2 parameters and the number of *v*-vertex ones is $O(v^{m-1})$ if $m=p_a-2 \ge 2$. Idea: since *b*-gons are of zero curvature, it suffices to give relative positions of *a*-gons having curvature $\kappa_i=1+\frac{a}{k}-\frac{a}{2}$. At most p_a-1 vectors will do, since one position can be taken 0. But once $p_a - 1$ a-gons are specified, the last one is constrained. The number of *m*-parametrized spheres with at most *v* vertices is $O(v^m)$ by direct integration. The number of such *v*-vertex spheres is $O(v^{m-1})$ if m > 1, by a Tauberian theorem.

Parameterizing parabolic ($\kappa_b = 0$) ({a, b}; k)-spheres

Thurston, 1993, implies: $(\{a, b\}; k)$ -spheres have p_a -2 parameters and the number of *v*-vertex ones is $O(v^{m-1})$ if $m=p_a-2 \ge 2$. Idea: since *b*-gons are of zero curvature, it suffices to give relative positions of *a*-gons having curvature $\kappa_i=1+\frac{a}{k}-\frac{a}{2}$. At most p_a-1 vectors will do, since one position can be taken 0. But once $p_a - 1$ a-gons are specified, the last one is constrained. The number of *m*-parametrized spheres with at most *v* vertices is $O(v^m)$ by direct integration. The number of such *v*-vertex spheres is $O(v^{m-1})$ if m > 1, by a Tauberian theorem.

- Goldberg, 1937: $\{a, 6\}_{\nu}$ (highest 2 symmetries): 1 parameter Fowler and al., 1988: $\{5, 6\}_{\nu}$ (D_5 , D_6 or T): 2 parameters.
- Grűnbaum–Motzkin, 1963: {3,6}_v: 2 parameters.
 Deza–Shtogrin, 2003: {2,4}_v; 2 (Gaussian int.) parameters.
- Thurston, 1993: {5,6}_v: 10 (Eisenstein integers) parameters Graver, 1999: {5,6}_v: 20 integer parameters.
- Rivin, 1994: $\{5,6\}_{\nu}$: parametrization by 18 dihedral angles.

Parameterizing (R, k)-spheres with min_{$i \in R$} $\kappa_i \ge 0$

Thurston, 1998 (actually, 1993) parametrized (dually) all 19 series of $(\{3, 4, 5, 6\}, 3)$ -spheres. In general, such (R, k)-spheres are given by $m = \sum_{3 \le i < \frac{2k}{k-2}} p_i - 2$ complex parameters z_1, \ldots, z_m . The number of vertices is expressed as a non-degenerate Hermitian form $q=q(z_1,\ldots,z_m)$ of signature (1,m-1). Let H^m be the cone of $z=(z_1,\ldots,z_m)\in\mathbb{C}^m$ with q(z)>0. Given (R, k)-sphere is described by different parameter sets; let $M = M(\{p_3, \ldots, p_m\}; k)$ be the discrete linear group preserving q. For k=3, the quotient $H^m/(\mathbb{R}_{>0} \times M)$ is of finite covolume. Sah, 1994, deduced: the number of corresp. spheres grows as $O(v^{m-1})$ Dutour partially generalized above for other k and surface maps.

8 families: number of complex parameters by groups

- **•** $\{5,6\}_{\nu}$ C₁(10), C₂(6), C₃(4), D₂(4), D₃(3), D₅(2), D₆(2), T(2), $\{I, I_h\}(1)$
- **2** $\{4,6\}_{v}$ **C**₁(4), **C**₂\S₄(3), **D**₂(2), **D**₃(2), $\{D_6, D_{6h}\}(1)$, $\{O, O_h\}(1)$
- **3** $\{3,4\}_{\nu}$ C₁(6), C₂(4), D₂(3), D₃(2), D₄(2), $\{O, O_h\}(1)$
- **a** $\{2,3\}_{v}$ **C**₁(4), **C**₂(3), **C**₃(3), **D**₂(2), **D**₃(2), **T**(1), $\{D_6, D_{6h}\}(1)$
- **§** $\{3,6\}_{\nu}$ **D**₂ (2) (also, 3 natural parameters), $\{T, T_d\}(1)$
- **(3)** $\{2,4\}_{\nu}$ **D**₂(2) (also, 3 natural parameters), $\{D_4, D_{4h}\}(1)$
- $(2,6)_{\nu} \{D_3, D_{3h}\}(1)$
- **3** $\{1,3\}_{v}$ $\{C_{3}, C_{3v}, C_{3h}\}(1)$

Thurston, 1998 implies: $(\{a, b\}; k)$ - \mathbb{S}^2 have $p_a - 2$ parameters and the number of *v*-vertex ones is $O(v^{m-1})$ if $m=p_a-2>1$.

LEGO-LIKE ({*a*, *b*}; *k*)-SPHERES AND TORI

Let all faces be partitioned into isomorphic clusters

- lego-like maps: ({a, b}; k)-𝔅² with 1≤a<b and all faces partitioned into min(p_a, p_b) legos (isomorphic disjoint clusters of faces); they are called ab^f lego-like or a^f b lego-like, resp.
- *m*-reducible maps: (*R*; *k*)-𝔽² with all faces partitioned into *m* ≥ 2 legos (isomorphic disjoint clusters of faces). Clearly, *m* ≤ min_{*a*∈*R*} *p_a* holds with equality exactly for lego-like maps.

2-reducible $(\{a, b\}; k)$ - \mathbb{S}^2 with $2 < \min(p_a, p_b)$. All but 1-st are lego-like

Another generalization: *c*-near-parabolic maps

A *c*-near-parabolic map is $(\{a, b, c\}; k)$ - \mathbb{F}^2 with $1 \le a < b = \frac{2k}{k-2}$ and all *a*- and *c*-gonal faces partitioned into $\min(p_c, \frac{b\chi}{b-a})$ legos. They are exactly parabolic maps $(\{a, b\}; k)$ - \mathbb{F}^2 if c = a (clusters are *a*-gons) and parabolic lego-like maps $(\{a, b\}; k)$ - \mathbb{F}^2 if c = b. They are some hyperbolic maps if $\kappa_c = 1 + \frac{c}{k} - \frac{c}{2} < 0$, i.e., c > b.

New frontier: to enumerate *c*-near-fullerenes

- *c*-near-fullerenes exist iff $c \ge 5$; they are fullerenes (clusters are 5-gons) for c=5 and 56^{f} lego-like fullerenes for c=6.
- The spherical Voronoi polyhedra of many energy potential minimizers (say, in Thomson problem for v unit-charged particles on sphere S²) and maximizers (say, in Tammes problem of minimum distance between v points on S²) are fullerenes or, for large v, 7-near-fullerenes.
- Haeckel, 1887, represented skeletons of zooplankton Aulonia by near-fullerene-looking ({5,6,7},3)- and ({5,6,8},3)-S². Same holds for some basket's patterns.
- But needed computations are too hard; so, we considered lego-likeness only, but for any ({a, b}; k)-spheres and tori.

Enumeration of lego-like fullerenes

A fullerene is lego-like if all its $12 + p_6$ faces are partitioned into min $(p_6, 12)$ legos (isomorphic clusters). So, $\frac{12}{p_6}$ or $\frac{p_6}{12}$ is an integer.

- All 1, 1, 2, 6, 89 of, resp., 24, 26, 28, 32, 44-vertex fullerenes are $5^{f}6$ lego-like with $f = \frac{12}{p_{6}} = 6, 4, 3, 2, 1$, respectively.
- Larger such fullerenes have $v=20+2p_6\equiv 20 \pmod{24}$ vertices. 4,281 of 6,332 68-vertex and 5,520 of 126,409 92-vertex fullerenes are 56^f lego-like with $f=\frac{p_6}{12}=2,3$, respectively.
- Any Goldgerg-Coxeter GC_{s,s-1}(Dodecahedron) fullerene has v=20+120^(s)₂ and it is lego-like. Its 12+60^(s)₂ faces form 12 legos: 5-gon surrounded by s-1 coronas of 6-gons.

All 11 possible lego's kinds in 28-vertex fullerenes

Representatives of all kinds of lego tilings in $F_{28}(T_d)$ and $F_{28}(D_2)$ having lego-wise, 2, 1, 1, 1, 1, 4, 2, 0, 1, 0, 0 and 3, 1, 3, 3, 0, 5, 5, 1, 1, 2, 1 orbits

All possible lego's kinds in 32-, 44-, 68-vertex fullerenes

All possible lego's kinds in 92-vertex fullerenes

For (3, 6; 3), (2, 6; 3), (2, 4; 4), all computed spheres are lego-like.

k	lego	(p_a, p_b)	v	nbG/real.	nbCases/real.	nbCasesRed/real.	Max./Min.	total
3	4 ³ 6	(6,2)	12	1/1	9/3	7/3	3/3	3
3	4 ² 6	(6,3)	14	1/1	4/2	4/2	2/2	2
3	46	(6,6)	20	3/3	1/1	1/1	9/2	13
3	46 ²	(6,12)	32	8/8	5/5	4/4	18/3	59
3	46 ³	(6,18)	44	14/14	21/20	13/13	36/2	132
3	46 ⁴	(6,24)	56	23/20	103/86	57/53	60/1	324
3	5 ⁶ 6	(12,2)	24	1/1	628/31	328/31	31/31	31
3	5 ⁴ 6	(12,3)	26	1/1	62/6	36/6	6/6	6
3	5 ³ 6	(12,4)	28	2/2	18/16	11/11	25/13	38
3	5 ² 6	(12,6)	32	6/6	5/5	4/4	13/4	45
3	56	(12,12)	44	89/89	1/1	1/1	627/1	11846
3	56 ²	(12,24)	68	6332/4281	5/5	4/4	128/1	36760
3	56 ³	(12,36)	92	126409/5520	25/25	15/15	287/1	18691
4	3 ⁴ 4	(8,2)	8	1/1	20/5	13/5	5/5	5
4	3 ² 4	(8,4)	10	2/2	4/4	3/3	8/4	12
4	34	(8,8)	14	8/8	1/1	1/1	11/1	27
4	34 ²	(8,16)	22	51/43	4/4	3/3	14/1	268
4	34 ³	(8,24)	30	218/69	16/16	10/10	20/1	311
4	34 ⁴	(8,32)	38	650/118	59/54	33/32	30/1	412
4	34 ⁵	(8,40)	46	1653/327	229/157	121/94	77/1	1312
6	2 ³ 3	(6,2)	3	1/1	4/2	3/2	2/2	2
6	23	(6,6)	5	2/2	1/1	1/1	2/1	3
6	23 ²	(6,12)	8	12/10	3/3	2/2	4/1	22
6	23 ³	(6,18)	11	16/9	7/6	4/4	5/1	19
6	23 ⁴	(6,24)	14	42/18	22/18	12/10	10/1	52
6	23 ⁵	(6,30)	17	48/11	61/27	32/17	28/1	55
6	23 ⁶	(6,36)	20	100/26	180/89	93/57	29/1	179

Parabolic lego-like $(\{a, b\}; k)$ - \mathbb{S}^2 : computations

- A parabolic $(\{a, b\}; k)$ - \mathbb{S}^2 is lego-admissible if and only if: for fullerenes ($\{5, 6\}$; 3)- p_6 | 12 or 12 | p_6 , i.e., either v = 24, 26, 28, 32, or $v \equiv 20 \pmod{24}$; for $(\{4, 6\}; 3)$ - $p_6 \mid 6 \text{ or } 6 \mid p_6: v=12, 14 \text{ or } v \equiv 8 \pmod{12};$ for $(\{3, 6\}; 3)$ - $p_6 \mid 4 \text{ or } 4 \mid p_6$: $v = 8 \text{ or } v \equiv 4 \pmod{8}$; for $(\{2, 6\}; 3)$ - $p_6 \mid 3$, impossible, or $3 \mid p_6: v \equiv 2 \pmod{6}$; for $(\{3,4\};4)$ - $p_4 \mid 8 \text{ or } 8 \mid p_4$: $v=8,10 \text{ or } v \equiv 6 \pmod{8}$; for $(\{2,4\};4)$ - $p_4 \mid 4 \text{ or } 4 \mid p_4$: $v = 4 \text{ or } v \equiv 2 \pmod{4}$; for $(\{2,3\}; 6)$ - $p_3 \mid 6$ or $6 \mid p_3$: v = 3 or $v \equiv 2 \pmod{3}$; for $(\{1,3\}; 6)$ - $p_3 \mid 3$, impossible, or $3 \mid p_3$, impossible.
- All 126 lego-admissible parabolic ({a, b}; k)-S² with p_b ≤ p_a (and all 22 ({4,6}; 3)-S² with p_b/p_a = 2, 3) are lego-like.
- For (a, b; k) = (4,6;3), (5,6;3), (3,4;4), (2,3;6), the vertex numbers, for which a lego-admissible, but not lego-like, parabolic ({a, b}; k)-S² is known, are all v, not as above. For (3,6;3), (2,6;3), (2,4;4), all computed spheres are lego-like.

$({4,6},3)$ -S²: all legos for v < 44 and 2,3 for v = 44,56

$({3,4},4)-\mathbb{S}^2$: all legos for v < 30 and 1 for v = 30, 38, 46

22 $D_{2d}(D_2)$ 22 $D_{4h}(D_{4h})$ 30 O(O) 38 $D_4(D_4)$ 46 $D_{4h}(D_4)$

$(\{2,3\},6)$ -S²: all legos for v < 14 and 2 for v = 14, 17, 20

3, $D_{3h}(C_2)$ **3**, $D_{3h}(D_{3h})$ **5**, $D_{3h}(D_3)$ **8**, $D_{6h}(D_{6h})$ **8**, $D_{6h}(D_3)$

11, $C_2(C_2)$ **11**, $D_{3h}(D_{3h})$ **11**, $D_{3h}(D_3)$ **11**, $D_{3h}(D_3)$ **14**, $D_6(D_6)$

14, $D_3(D_3)$ 17, $C_2(C_2)$ 17, $D_3(D_3)$ 20, $D_{3d}(S_6)$ 20, $D_{3h}(D_3)$

Goldberg–Coxeter series $GC_z(G_0)$: lego-admissibility

- Such $(\{a, b\}; k)$ - \mathbb{S}^2 are parameterized by one $z \in \mathbb{C}$: Gaussian integer s+ti, $||z||=z\overline{z}=s^2+t^2$ for k=4 and Eisenstein integer $s+t\omega$, $\omega = e^{\frac{2\pi}{6}i} = \frac{1+i\sqrt{3}}{2}$, $||z||=z\overline{z}=s^2+st+t^2$ for k=3, 6.
- We have GC_z(G_{z'}(G₀))=G_{z''}(G₀), where z''=zz' is multiplication in the rings Z[i]=Z² and Z[ω] of such integers.
- Given $z \in \mathbb{Z}[i]$ or $\in \mathbb{Z}[\omega]$ and a parabolic $(\{a, b\}; k)$ -sphere G_0 with p_a a-gons, p_b b-gons and so, $v = \frac{a}{k}p_a + \frac{b}{k}p_b$ vertices, the parabolic $(\{a, b\}; k)$ -sphere $GC_z(G_0)$ has v' = v||z|| vertices, $p'_a = p_a$ and $p'_b = \frac{k}{b}(v||z|| - \frac{a}{b}p_a) = \frac{||z||a}{b}p_a + ||z||p_b - \frac{a}{b}p_a$.
- So, $\frac{p'_b}{p'_a} = (||z|| 1)\frac{a}{b} + ||z||\frac{p_b}{p_a} \in \mathbb{N}$ if $\frac{p_b}{p_a} \in \mathbb{N}$ and for $(a, b; k) = (5, 6; 3), (3, 4; 4), (2, 3; 6): ||z|| \equiv 1 \pmod{b}, (3, 6; 3), (2, 4; 4): ||z|| \equiv 1 \pmod{2}$ and $(4, 6; 3), (2, 6; 3): ||z|| \equiv 1 \pmod{3}.$
- Each of 7 sets of all such z form a multiplicative submonoid of Z(i) or Z(ω) (submonoids, by multiplication and addition, of Z[i] and Z[ω], respectively, with s ≥ t ≥ 0, (s, t) ≠ (0,0)).

7 || · ||-defined monoids of Eisenstein and Gaussian integers

The submonoids $\mathbb{Z}(i)$, $\mathbb{Z}(\omega)$ (of $\mathbb{Z}[i]$, $\mathbb{Z}[\omega]$, respectively, with $s \ge \max(t, 1) \ge 0$) admit following three partitions into 2 monoids:

 $\begin{aligned} ||s+t\omega|| &= s^2 + st + t^2 \equiv 0 \text{ or } 1,3 \pmod{4} \text{ iff } s, t \equiv 0 \pmod{2} \text{ or not} \\ M &= \{z \in Z(\omega) : ||z|| \equiv 1 \pmod{2} \} \text{ and } \overline{M} = \mathbb{Z}(\omega) \setminus M \text{ are monoids.} \end{aligned}$

 $\begin{aligned} ||s+t\omega|| &= 3st+(s-t)^2 \equiv 0 \text{ or } 1 \pmod{3} \text{ iff } s-t \equiv 0 \text{ or } 1, 2 \pmod{3}. \\ N &= \{z \in Z(\omega) : ||z|| \equiv 1 \pmod{3}\} \text{ and } \overline{N} = \mathbb{Z}(\omega) \setminus N \text{ are monoids,} \\ \text{since } (s+t\omega)(s'+t'\omega) &= (S = ss'-tt') + (T = tt'+st'+s't)\omega \\ \text{and } s-t, s'-t' \equiv m \pmod{3} \text{ imply } S-T \equiv m^2 \pmod{3}. \\ L &= M \cap N = \{z \in Z(\omega) : ||z|| \equiv 1 \pmod{6}\} \text{ is also monoid.} \\ ||s+ti|| &= 2st+(s-t)^2 \equiv 0, 2 \text{ or } 1 \pmod{4} \text{ iff } s-t \equiv 0 \text{ or } 1 \pmod{2}. \\ R &= \{z \in Z(i) : ||z|| \equiv 1 \pmod{4}\} \text{ and } \overline{R} = \mathbb{Z}(i) \setminus R \text{ are monoids.} \end{aligned}$

Two series of lego-admissible $GC_z(G_0)$ with G_0 's $\frac{\rho_b}{\rho_c} \notin \mathbb{N}$

- (i) $(\{4,6\},3)$ - \mathbb{S}^2 : $v \equiv 2 \pmod{12}$, $z \equiv 4 \pmod{12}$. Smallest case: $v = 14, z = 2 + 0\omega$; unique G_0 has $\frac{p_b}{p_0} = \frac{3}{6}$, it is 4^26 ; 56-vertex $GC_{2,0}(G_0)$ is lego-admissible but not lego like.
- (ii) $(\{3,4\},4)$ - \mathbb{S}^2 : $v \equiv 3 \pmod{4}$, $z \equiv 2 \pmod{4}$. Smallest case: v=11, z=1+i; both, G_0 and $G_{1,1}(G_0)$ are not lego-like.

It is lego-admissible ($p_4 = 2p_3$) but not lego-like, i.e., not 34^2

Infinite series of lego-like Goldberg–Coxeter $GC_z((\{a\};k))$

- Theorem: If $||z = s + t\omega|| \equiv 1 \mod 6$, then $GC_z((\{a\}, 3)-\mathbb{S}^2)$ is a lego-like $(\{a, 6\}, 3)-\mathbb{S}^2$ for a = 2, 3, 4, 5. Moreover: (i) $GC_z(Dodecahedron)$ is lego-like iff $||z|| \equiv 1 \mod 6$. (ii) $GC_{s,s-1}((\{a\}, k)-\mathbb{S}^2)$ is lego-like iff $(\{a\}; k)-\mathbb{S}^2$ lego-like, i.e. for each of 7 (all but $(\{1, 3\}, 6)-\mathbb{S}^2)$ parabolic families. In fact, $||s + (s - 1)\omega|| = s^2 + s(s - 1) + (s - 1)^2 = 6{s \choose 2} + 1$ and $||s + (s - 1)i|| = s^2 + (s - 1)^2 = 4{s \choose 2} + 1$ for k = 4.
- Conjecture: lego-admissible GC_{s,t}(({a}; k)-S²) are lego-like. Moreover: (i) One of possible legos is a-gon, surrounded, in some a-gonal symmetry, by layers (not necessarily complete) of b-gons. It holds for above t = s - 1, when ^{Db}/_{Pa} = a(^s/₂).
 (ii) If the number of vertices is large enough, no other lego-like parabolic spheres exist.

All parabolic ab^{f} -spheres $GC_{2,0}$ (1, 2, 3-rd) and all 7 $GC_{2,1}$

Unique $GC_{1,1}$: Trunc. Tetrahedron, 12, T_d ; ({3,6}; 3)-, $\vec{p}=(4,4)$.

All (13 and 1 infinite series) elliptic lego-like $(\{a, b\}; k)$ - \mathbb{S}^2

Hyperbolic lego-like $(\{a, b\}; k)$ - \mathbb{S}^2 : computations

k	lego	(p_a, p_b)	v	nbG/real.	nbCases/real.	nbCasesRed/real.	Max./Min.	total
3	37 ²	(12,24)	68	$\geq 105/ \geq 101$	5/5	3/3	$\geq 120/1$	≥ 2625
3	37	(6,6)	20	4/4	1/1	1/1	6/2	15
3	3 ² 8	(6,3)	14	1/1	4/2	4/2	2/2	2
3	38	(12,12)	44	298/203	1/1	1/1	104/3	4812
3	3 ³ 9	(6,2)	12	1/1	9/4	6/4	4/4	4
3	3 ² 9	(8,4)	20	3/3	4/4	4/4	6/4	15
3	4 ² 7	(8,4)	20	2/2	4/4	4/4	7/4	11
3	47	(12,12)	44	127/78	1/1	1/1	224/2	3440
3	4 ⁴ 8	(8,2)	16	2/2	34/16	24/16	11/6	17
3	4 ³ 8	(9,3)	20	0/0	14/0	10/0	0/0	0
3	4 ² 8	(12,6)	32	32/17	5/5	5/5	11/1	61
3	4 ³ 9	(12,4)	28	3/3	18/18	12/12	18/12	46
3	5 ⁵ 7	(15,3)	32	0/0	276/0	146/0	0/0	0
3	5 ⁴ 7	(16,4)	36	2/2	79/54	45/37	53/45	98
3	5 ³ 7	(18,6)	44	13/11	21/21	13/13	27/1	103
3	5 ² 7	(24,12)	68	6556/1122	5/5	4/4	303/1	10976
3	5 ⁶ 8	(18,3)	38	1/1	1316/20	682/20	20/20	20
3	5 ⁵ 8	(20,4)	44	3/3	374/148	196/105	89/30	191
3	5 ⁴ 8	(24,6)	56	27/15	103/84	59/55	75/1	343
4	3 ⁵ 5	(10,2)	10	1/1	59/11	34/11	11/11	11
4	3 ³ 5	(12,4)	14	2/2	12/10	8/8	10/6	16
4	3 ² 5	(16,8)	22	52/13	4/4	3/3	27/1	157
5	3 ⁷ 4	(28,4)	20	5/5	803/233	407/171	86/24	300
5	3 ⁶ 4	(30,5)	22	12/3	305/3	159/2	2/1	4
5	3 ⁴ 4	(40,10)	32	45460/66	39/25	22/15	8/1	115
All hyperbolic lego-admissible $(\{a, b\}; k)$ - \mathbb{S}^2 with $a \geq 3$:

• For
$$(\{5, b \ge 7\}; 3)$$
- \mathbb{S}^2 : $\vec{p} = (2b, 2), (3(b-2), 3), (4(b-3), 4), (6(b-4), 6), (12(b-5), 12).$
• For $(\{4, b \ge 7\}; 3)$ - \mathbb{S}^2 :
 $\vec{p} = (b, 2), (3\frac{b-2}{2}; 3), (3(b-4), 6)$ if *b* is even,
 $\vec{p} = (2(b-3), 4), (6(b-5), 12)$ if *b* is odd.
• For $(\{3, b \ge 7\}; 3)$ - \mathbb{S}^2 :
 $\vec{p} = (2\frac{b}{3}, 2), (4\frac{b-3}{3}; 4)$ if $b \equiv 0 \pmod{3}$,
 $\vec{p} = (b-2, 3), (4(b-5), 12)$ if $b \equiv 2 \pmod{3}$,
 $\vec{p} = (2(b-4), 6)$ if $b \equiv 1 \pmod{3}$ and
exceptional case of $\vec{p} = (12, 24)$ for $(\{3, 7\}; 3)$ - \mathbb{S}^2 .
• For $(\{3, b \ge 5\}; 4)$ - \mathbb{S}^2 : $\vec{p} = (2b, 2), (4(b-2), 4), (8(b-3), 8).$
• For $(\{3, b \ge 4\}; 5)$ - \mathbb{S}^2 : $\vec{p} = (6b, 2), (4(3b-5), 4), (5(3b-6), 5), (10(3b-8), 10), (20(3b-9), 20)$

Table presents lego-likeness data for smallest b in all above cases.

General

Parabolic ({a, b}; k)-maps on surfaces \mathbb{T}^2 , \mathbb{K}^2 , \mathbb{P}^2

All hyperbolic lego-like $(\{a, b\}; k)$ - \mathbb{S}^2 with $a \ge 3$: examples

Lego-like ($\{a, b\}$; k)-spheres with $a \ge 3$: synopsis

There are 4 elliptic ones and 4 infinite subseries: of parabolic series $(\{5,6\};3)$ -, $(\{4,6\};3)$ -, $(\{3,6\};3)$ -, $(\{3,4\};4)$ - \mathbb{S}^2 . For hyperbolic:

- All possible (a, k) are (5, 3), (4, 3), (3, 3), (3, 4) and (3, 5) with any integer $b > \frac{2k}{k-2}$ for each of possible five (a, k).
- The number of such spheres is finite for each fixed b.
- $1 \leq \frac{p_a}{p_b} \leq 3b$, except the case $\vec{p} = (12, 24)$ for $(\{3, 7\}; 3)$ - \mathbb{S}^2 . $\frac{p_a}{p_b} = 1$ only in 3 cases with k=3; $\frac{p_a}{p_b} = 2$ only in 13 cases k=3, 4. $\frac{p_a}{p_b} = 3b$ only for $(\{3, b\}; 5)$ - \mathbb{S}^2 ; otherwise, $\frac{p_a}{p_b} \leq 2b$.
- Any lego-admissible $(\{a, b\}; k)$ - \mathbb{S}^2 with $p_b=2 \le a$ is lego-like. All such lego-non-admissible ones are odd prisms and $(\{2, b\}; k)$ - \mathbb{S}^2 with odd $\frac{b(k-2)}{2}$. We list also all lego-like ones.

Lego-like $(\{2, b\}; k)$ -spheres: synopsis

There are 6 elliptic ones and 3 infinite subseries: of parabolic series $(\{2,6\};3)$ -, $(\{2,4\};4)$ -, $(\{2,3\};6)$ - \mathbb{S}^2 . For hyperbolic ones:

- There are double infinity of (b>^{2k}/_{k-2}, k) for lego-admissible, but the number of such spheres is finite for each fixed (b, k). It holds p_b | 4k; for k=3, all (2, 3, 4, 6, 12) are lego-admissible.
- $1 \le \frac{p_2}{p_b} \le \frac{b(k-2)}{4}$, except the cases $\vec{p} = (6, 12), (12, 36)$ for $(\{2, 7\}; 3)$ - \mathbb{S}^2 and $\vec{p} = (14, 28), (28, 84)$ for $(\{2, 3\}; 7)$ - \mathbb{S}^2 .
- $(\{2, b\}; k)$ - \mathbb{S}^2 with $p_b=4k, 2k, \frac{4k}{3}, k$ is lego-agmissible iff, resp., $(b-2)(k-2)\equiv 3, 2, 1, 0 \pmod{4}$. Exp. of lego-like (b, p_b) are (3, 4k=16t+4), (3, 2k=8t), (4, 2k=4t+2), (4t+2, k=3).

Lego-like $(\{1, b\}; k)$ -spheres: synopsis

There are no parabolic ones. For elliptic: 3 and unique infinite series ({1,2}; k=4f+2)- \mathbb{S}^2 , v=1, with $\vec{p}=(2,2f)$. For hyperbolic:

- $\frac{p_1}{p_b} \le b-2$, except $\vec{p} = (4, 2)$ for 1-vertex $(\{1, 3\}; 10)-\mathbb{S}^2$, and $1 \le \frac{p_1}{p_b}$, except 16 cases $(\{1, b\}; k)-\mathbb{S}^2$ with $2 \le \frac{p_b}{p_1} \le 5$.
- For any $b>2 \le p_b$ with even bp_b , series $(\{1, b\}; k=p_b(b-1))$ -, v=2, with $\vec{p}=(p_b(b-2), p_b)$. It is $p_b \times K_2$ with added, inside of each of p_b 2-gons: $\frac{b-2}{2}$ and $\frac{b-2}{2}$ 1-gons if b is even, or, alternating, $\frac{b-1}{2}$ and $\frac{b-3}{2}$ 1-gons if b is odd but p_b is even.
- For $\frac{p_a}{p_b}=1,2$, above series with b=3,4 are unique infinite ones

Lego-admissible $(\{a, b\}; k)$ -tori \mathbb{T}^2 and \mathbb{K}^2 , \mathbb{P}^2

Any $(\{a, b\}; k)$ - \mathbb{T}^2 has $v = \frac{2}{k-2}p_a(\frac{p_b}{p_a}+1)$ and, if $p_b>0$, is hyperbolic We have $a < \frac{2k}{k-2} \le 6$ and, for $a \ge 3$, it holds $k < \frac{2a}{a-2} \le 6$. For given a, k, the number of triples $(a, b; \frac{p_a}{p_b})$ with $\frac{p_a}{p_b} \in \mathbb{N}$ is infinite (say, $(\{5, b\}; 3)$ - \mathbb{T}^2 with $p_5 = (b-6)p_b$), while with $\frac{p_b}{p_a} \in \mathbb{N}$ it is finite (27).

The parameters of putative $(\{a, b\}; k)$ - \mathbb{T}^2 with $\frac{p_b}{p_a} \in \mathbb{N}$, $a \ge 3$. Also, 10 cases with a=2 $(k=3,\ldots,8,10)$ and 11 $(3\le k\le 14)$ with a=1.

k	a,b	v	p _b p _a
3	3,7	8 <i>p</i> 3	3
3	3,9	4 <i>p</i> 3	1
3	4,7	6 <i>p</i> 4	2
3	4,8	4 <i>p</i> 4	1
3	5,7	4 <i>p</i> 5	1
4	3,5	2 <i>p</i> 3	1

Lego-like maps $(\{a, b\}; k)$ on the projective plane \mathbb{P}^2 and Klein bottle \mathbb{K}^2 are the antipodal quotients of the centrally symmetric lego-like maps $(\{a, b\}; k)$ on \mathbb{S}^2 and \mathbb{T}^2 , resp., having $p_a, p_b \ge 4$.

Lego-like ({3, b}; 3)-tori with $\frac{p_a}{p_b} \leq 2$

3, 4, 5 are only possible a in a $({a, b}; 3)$ -torus with $a \ge 3$.

k	lego	(p_a, p_b)	v	nbG/real.	nbCases/real.	nbCasesRed/real.	Max./Min.	total
3	37 ³	(1,3)	8	1/1	30/8	17/8	8/8	8
3	37 ³	(2,6)	16	6/6	30/29	17/17	34/9	145
3	37 ³	(3,9)	24	5/5	30/17	17/12	21/5	66
3	37 ³	(4,12)	32	153/128	30/30	17/17	58/1	1735
3	37 ³	(5,15)	40	219/74	30/17	17/12	28/1	276
3	37 ³	(6,18)	48	6625/2165	30/30	17/17	81/1	11007
3	39	(1,1)	4	1/1	1/1	1/1	1/1	1
3	39	(2,2)	8	1/1	1/1	1/1	2/2	2
3	39	(3,3)	12	5/5	1/1	1/1	4/2	12
3	39	(4,4)	16	21/20	1/1	1/1	6/2	60
3	39	(5,5)	20	36/28	1/1	1/1	8/2	110
3	39	(6,6)	24	180/132	1/1	1/1	18/2	741
3	39	(7,7)	28	574/315	1/1	1/1	31/2	2194
3	39	(8,8)	32	2561/1296	1/1	1/1	49/2	11821
3	39	(9,9)	36	9402/3703	1/1	1/1	78/2	40284
3	3 ² 12	(2,1)	6	1/1	6/2	6/2	2/2	2
3	3 ² 12	(4,2)	12	5/4	6/6	6/6	5/4	18
3	3 ² 12	(6,3)	18	14/12	6/4	6/4	4/1	21
3	3 ² 12	(8,4)	24	217/96	6/6	6/6	14/1	299
3	3 ² 12	(10,5)	30	245/60	6/5	6/5	4/1	89

Lego-like ({4, *b*}; 3)-tori with $\frac{p_a}{p_b} \leq 2$

k	lego	(p_a, p_b)	v	nbG/real.	nbCases/real.	nbCasesRed/real.	Max./Min.	total
3	47 ²	(1,2)	6	0/0	6/0	4/0	N/A	0
3	47 ²	(2,4)	12	4/4	6/6	4/4	13/4	32
3	47 ²	(3,6)	18	8/8	6/6	4/4	8/3	45
3	47 ²	(4,8)	24	48/46	6/6	4/4	25/1	569
3	47 ²	(5,10)	30	114/98	6/6	4/4	18/1	676
3	47 ²	(6,12)	36	692/581	6/6	4/4	69/1	7145
3	47 ²	(7,14)	42	2751/2013	6/6	4/4	66/1	17983
3	47 ²	(8,16)	48	16970/11117	6/6	4/4	226/1	131136
3	48	(1,1)	4	1/1	1/1	1/1	1/1	1
3	48	(2,2)	8	3/3	1/1	1/1	1/1	3
3	48	(3,3)	12	5/5	1/1	1/1	3/1	7
3	48	(4,4)	16	25/23	1/1	1/1	10/1	79
3	48	(5,5)	20	21/15	1/1	1/1	7/1	41
3	48	(6,6)	24	158/115	1/1	1/1	30/1	858
3	48	(7,7)	28	161/89	1/1	1/1	29/1	634
3	48	(8,8)	32	1619/905	1/1	1/1	100/1	13918
3	48	(9,9)	36	1768/719	1/1	1/1	100/1	11751
3	48	(10,10)	40	19891/8269	1/1	1/1	360/1	236964
3	4 ² 10	(2,1)	6	1/1	6/4	6/4	4/4	4
3	4 ² 10	(4,2)	12	4/3	6/6	6/6	8/6	22
3	4 ² 10	(6,3)	18	21/14	6/6	6/6	6/1	44
3	4 ² 10	(8,4)	24	90/39	6/6	6/6	21/1	226
3	4 ² 10	(10,5)	30	274/42	6/6	6/6	8/1	121
3	4 ² 10	(12,6)	36	2450/435	6/6	6/6	24/1	1819

Lego-like ({5, b}; 3)-tori with $\frac{p_a}{p_b} \leq 3$

k	lego	(p_a, p_b)	v	nbG/real.	nbCases/real.	nbCasesRed/real.	Max./Min.	total
3	57	(1,1)	4	0/0	1/0	1/0	N/A	0
3	57	(2,2)	8	1/1	1/1	1/1	1/1	1
3	57	(3,3)	12	1/1	1/1	1/1	3/3	3
3	57	(4,4)	16	8/8	1/1	1/1	10/4	46
3	57	(5,5)	20	3/3	1/1	1/1	11/8	29
3	57	(6,6)	24	43/43	1/1	1/1	30/1	440
3	57	(7,7)	28	17/16	1/1	1/1	47/1	357
3	57	(8,8)	32	304/275	1/1	1/1	100/1	5866
3	57	(9,9)	36	229/191	1/1	1/1	234/1	8118
3	57	(10, 10)	40	2698/2088	1/1	1/1	428/1	92030
3	57	(11, 11)	44	2948/2109	1/1	1/1	829/1	154348
3	57	(12,12)	48	30625/19541	1/1	1/1	1514/1	1538904
3	5 ² 8	(2,1)	6	1/1	6/4	5/4	4/4	4
3	5 ² 8	(4,2)	12	4/4	6/6	5/5	9/6	31
3	5 ² 8	(6,3)	18	10/8	6/6	5/5	7/2	37
3	5 ² 8	(8,4)	24	46/46	6/6	5/5	28/1	370
3	5 ² 8	(10,5)	30	118/65	6/6	5/5	17/1	228
3	5 ² 8	(12,6)	36	670/414	6/6	5/5	75/1	2594
3	5 ² 8	(14,7)	42	2613/763	6/6	5/5	58/1	3271
3	5 ² 8	(16,8)	48	16162/4670	6/6	5/5	237/1	30743
3	5 ³ 9	(3,1)	8	0/0	30/0	18/0	N/A	0
3	5 ³ 9	(6,2)	16	4/4	30/27	18/18	35/12	108
3	5 ³ 9	(9,3)	24	7/6	30/15	18/12	12/1	27
3	5 ³ 9	(12,4)	32	120/94	30/30	18/18	57/1	1345
3	5 ³ 9	(15,5)	40	215/61	30/17	18/14	10/1	134
3	5 ³ 9	(18,6)	48	4601/1467	30/30	18/18	106/1	8673

All but $1 \leq 28$ -vertex azulenoids (($\{5,7\}$; 3)- \mathbb{T}^2): lego-like

({a, b}; k)-maps on general surfaces

(R, k)-maps on general surface \mathbb{F}^2

- Given R ⊂ N and a surface F², an (R, k)-F² is a k-regular map on surface F² whose faces have gonalities i ∈ R.
- The Euler characteristic χ(F²) is v-e+f = ∑_i p_iκ_i, where κ_i=1+ⁱ/_k ⁱ/₂ and p_i is the number of *i*-gons. So, elliptic and, with |R|>1, parabolic (R, k)-maps exist only on S² and P².
- In fact, all connected *closed* (compact and without boundary) irreducible surfaces 𝔽² with χ(𝔽²)≥0 are (with χ = 2,0,1,0, respectively): orientable: sphere 𝔇², torus 𝔼² and non-orientable: real projective plane 𝒫² and Klein bottle 𝑢².
- Again, let our (R, k)-maps be parabolic, i.e., $\min_{i \in R} \kappa_i = 0$. Then $M =: \max\{i \in R\} = \frac{2k}{k-2}$, and (M, k) = (6, 3), (4, 4), (3, 6).
- Also, there are infinity of parabolic maps (R, k)-F², since the number p_M of *flat* (κ_M=0) faces is not restricted.
- Also, if $\chi(\mathbb{F}^2) = \sum_i p_i \kappa_i = 0$, i.e. \mathbb{F}^2 is \mathbb{T}^2 or \mathbb{K}^2 , then $R = \{M\}$

Parabolic $(\{a, b\}; k)$ -maps on torus and Klein bottle

So, $\{a, b\}$; k)- \mathbb{T}^2 and $(\{a, b\}; k)$ - \mathbb{K}^2 have $a = b = \frac{2k}{k-2}$ and (a = b, k) should be (6, 3), (3, 6) or (4, 4).

We consider only polyhedral maps, i.e. no loops or multiple edges (1- or 2-gons), and any two faces intersect in edge, point or \emptyset only.

Smallest such \mathbb{T}^2 - and \mathbb{K}^2 -maps for (a=b, k)=(4, 4), (6, 3), (3, 6): as 4-regular quadrangulations: K_5 and $K_{2,2,2}$ $(p_4 = 5, 6)$; as 6-regular triangulations: K_7 and $K_{3,3,3}$ $(p_3 = 14, 18)$; as 3-regular polyhexes: Heawood graph (dual K_7) and dual $K_{3,3,3}$ $(p_6=7, 9)$. Two those graphs are the smallest \mathbb{T}^2 - and \mathbb{K}^2 -fullerenes

Smallest \mathbb{T}^2 - and \mathbb{K}^2 -fullerenes: dual K_7 and dual $K_{3,3,3}$

3-regular polyhexes on \mathbb{T}^2 , cylinder, Möbius surface, \mathbb{K}^2 are $\{6^3\}$'s quotients by fixed-point-free group of isometries, generated by: two translations, a transl., a glide reflection, transl. *and* glide reflection.

8 parabolic families on the projective plane

(R, k)-maps on the projective plane are the antipodal quotients of centrally symmetric (R, k)- \mathbb{S}^2 ; so, halving their *p*-vector and *v*.

The point symmetry groups with inversion operation are: T_h , O_h , I_h , C_{mh} , D_{mh} with even m and D_{md} , S_{2m} with odd m. So, they are

- **9** for $\{5, 6\}_{v}$: C_{i} , C_{2h} , D_{2h} , D_{3d} , D_{6h} , S_{6} , T_{h} , D_{5d} , I_{h}
- **2** 7 for $\{2,3\}_{v}$: C_{i} , C_{2h} , D_{2h} , D_{3d} , D_{6h} , S_{6} , T_{h}
- **6** for $\{4, 6\}_{v}$: C_{i} , C_{2h} , D_{2h} , D_{3d} , D_{6h} , O_{h}
- **6** for $\{3,4\}_{v}$: C_{i} , C_{2h} , D_{2h} , D_{3d} , D_{4h} , O_{h}
- **5** 2 for $\{2,4\}_{v}$: D_{2h} , D_{4h}
- **1** for $\{3, 6\}_{v}$: D_{2h}
- \bigcirc 0 for $\{2,6\}_{v}$ and $\{1,3\}_{v}$
- Of. 12 for icosahedrites (({3,4},5)-spheres): C_i, C_{2h}, C_{4h}, D_{2h}, D_{4h}, D_{3d}, D_{5d}, S₆, S₁₀, T_h, O_h, I_h

6 parabolic families $(\{a, b\}; k)$ - \mathbb{P}^2 : 1-parameterization

- $\{2,3\}_{v}$: C_{i} , C_{2h} , D_{2h} , S_{6} , D_{3d} , D_{6h} , T_{h}
- $\{ 3,4 \}_{v}: C_{i}, C_{2h}, D_{2h}, D_{3d}, D_{4h}, O_{h}$
- **5** $\{2,4\}_{v}$: D_{2h} , D_{4h}
- **(3, 6)**_v: D_{2h}

 $(\{2,3\}, 6)$ -spheres T_h and D_{6h} are $GC_{k,k}(2 \times Tetrahedron)$ and, for $k \equiv 1, 2 \pmod{3}$, $GC_{k,0}(6 \times K_2)$, respectively. Other spheres of blue symmetry are $GC_{k,l}$ with l = 0, k from the first such sphere. So, each of 7 blue-symmetric families is described by one natural parameter k and contains $O(\sqrt{v})$ spheres with at most v vertices.

Petersen graph is the smallest projective plane's fullerene

The smallest maps for $(\{a, b\}; k) = (\{5, 6\}, 3), (\{3, 4\}, 5), (\{4, 6\}, 3)$ are: Petersen graph (dual K_6), K_6 (half-lcosahedron; smallest \mathbb{P}^2 -triangulation), K_4 (smallest \mathbb{P}^2 -quadrangulation), i.e., the antipodal quotients of Dodecahedron, lcosahedron and Cube.

Relatives: plane fullerenes, azulenoids, schwartzites

(Euclidean) plane fullerenes $({5,6},3)$ - \mathbb{E}^2

- An $(\{a, b\}; k)$ - \mathbb{E}^2 is a k-regular tiling of \mathbb{E}^2 by a- and b-gons.
- ({a, b}; k)-E² have p_a ≤ b/b-a and p_b = ∞. It follows from Alexandrov, 1958: any metric on E² of non-negative curvature can be realized as a metric of convex surface on E³. In fact, consider plane metric such that all faces became regular in it. Its curvature is 0 on all interior points (faces, edges) and ≥ 0 on vertices. A convex surface is at most half-S².
- There are ∞ of $(\{a, b\}; k)$ - \mathbb{E}^2 if $2 \le p_a \le \frac{b}{b-a}$ and 1 if $p_a = 0, 1$.
- For plane fullerenes (or nanocones) ({5,6},3)-E², the number of equivalence (isomorphic up to a finite induced subgraph) classes is (Klein–Balaban, 2007) 2,2,2,1 if p₅=2,3,4,5, resp.
- Nanotubes (case $p_5=6$) come by rolling up the graphite $\{6^3\}$.
- There are 7 (with b=7,7,7,7,8,8,12) plane fulleroids, i.e. ({5, b}, 3)-ℝ², which are 2-isohedral (symmetry G ≈ Aut and faces form 2 orbits under comb. automorphisms group Aut).

Two other $(\{5, 6, c\}, 3)$ - \mathbb{F}^2 used in Chemistry

• Azulenoids: $(\{5, 6, 7\}, 3)$ - \mathbb{T}^2 ; so, $g=1, p_5=p_7$ (Kirby-Diudea, 2003, et al.), since *naftalen* and *azulen* are $C_{10}H_8$ isomers.

Schwartzits: ({6, c ≥ 7}, 3)-F² on minimal surfaces F² of const. negative curvature (g ≥ 2) (Terrones-MacKay, 1997). Knor et al., 2015: such polyhedral ({6, c}, 3)-maps exist for any g≥2, p₆≥0 and c=7, 8, 9, 10; with 1 undecided subcase. Analog of icos. fullerenes: ({6,7}, 3)_v on D-surface, g=3, with v=56(p²+pq+q²), starting with Klein regular map {7³}.

c-disk fullerenes

$({5, 6, c}, 3)$ -spheres

- Clearly, a v-vertex $({5, 6, c}, 3)$ - \mathbb{S}^2 is a fullerene if c = 5, 6 and $p_5 = 12 + p_c(c 6)$, $v = 20 + 2(p_6 + p_c(c 5))$, otherwise.
- In Haeckel, 1887, skeletons of radiolarian zooplankton Aulonia hexagona are represented by ({5,6,7},3)- and ({5,6,8},3)spheres. Same holds for some basket's patterns.
- The spherical Voronoi polyhedra of many energy potential minimizers (say, in Thomson problem for v unit-charged particles on sphere S²) and maximizers (say, in Tammes problem of minimum distance between v points on S²) are fullerenes or, for large v, specific ({5,6,7},3)-S².
- Behmaram, Doslic and Friedland, 2016, considered the number of perfect matchings in ({5, 6, c}, 3)-S² with p_c = 2.
- We will consider in depth the case $p_c = 1$, i.e., when 5- and 6-gons tile a *c*-disk, instead of a sphere as fullerenes do.

c-disk and c-multidisk fullerenes

- Call a ({5,6,c},3)-S², p_c=1, c-disk-fullerene c-DF, if c-gon not self-intersects and c-multidisk-fullerene c-MDF, else.
- Any c-DF or c-MDF has p₅=c+6, v=2(p₆+c+5) and there is an ∞ of c-DF's for any c≥1 and of c-MDF's for any c≥8
- Possible symmetry groups of a *c*-*DF* with *c*≠5, 6 or *c*-*MDF*: *C_k*, *C_{kν}* with *k* ∈ {1,2,3,5,6} and *k* dividing *c* (symmetries stabilize *c*-gon and axis pass by a vertex, edge or face),

8- $MDF_{78}(C_{2\nu})$: min. 8-MDF and c-MDF with smallest c

Fullerene *c*-disks: main notions

- Fullerene *c*-polycycle: an *c*-gon partitioned into 5- and 6-gons with vertices of degree 3 inside and 3 or 2 on the *c*-gon.
- c-disk fullerene: full. c-polycycle without degree 2 vertices; so, p₅=p₆+6. If c ∈ {5,6}, it is a fullerene without a face.
- Fullerene *c*-patch: fullerene *c*-polycycle, which is a fullerene's part; so, $p_5 \le 12$. It is a *c*-disk fullerene if f $c \in \{5, 6\}$.
- *c*-thimble fullerene: a 3-connected *c*-disk fullerene with only 5-gons adjacent to the *c*-gon. It exists if and only if $c \ge 5$. Smallest *c*-thimble has $c - 6 \le p_6 \le \lfloor \frac{3(c-5)}{2} \rfloor$; conj.: $= \lfloor \frac{3(c-5)}{2} \rfloor$.

Connectivity of *c*-disk fullerenes

- Any *c-MDF* and 1-*DF* are 1-connected, but not 2-connected.
- Any *c*-*DF* is 2-connected; only 2-connected exist iff $c \ge 8$.
- Smallest such have $p_6=23, 17, 10, 8$ for c=8, 9, 10, 11 and, for $c \ge 12$, $p_6=4, 5, 6$ if $c \equiv \pmod{10}$ to 4, 5, 6 or 2, 3, 7, 8 or 1, 9
- Smallest 3-connected (i.e., polyhedral) ones have $m(c) := p_6 = 3, 2, 0, 1, 3, 4, 6, 7, 8$ for $3 \le c \le 11$ and (conj.) 6 for $c \ge 12$.
- Conjecture: 3-connected c-DF_v exists except (c, v)=(1, 42), (3, 24), (5, 22) iff v is even and v ≥ 2(m(c) + c + 5).

Minimal *c*-disk fullerenes

For $v \neq 13, 14$ above are minimal, but minimal 13- and 14-*DF* are 2-connected and have $p_6=5, 4$ respectively, i.e. less than 6 above. Conjecture: for $c \geq 13$, minimal 3-connected *c*-disk is *c*-pentatube $B+Hex_3+Pen_{c-12}+Hex_3+B$ (symmetry C_s/C_2 for odd/even *c*). All minimal *c*-*DF*, $5 \leq c \leq 9$, and a minimal 10-*DF* are *c*-thimbles.