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I.General

quasi-semi-metrics
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Quasi-semi-metrics

Given a set X, a function q : X × X → R≥0 with q(x, x)=0 is
a quasi-distance (or, in Topology, prametric ) on X.

A quasi-distance q is a quasi-semi-metric if for x, y, z ∈ X

holds q(x, y) ≤ q(x, z) + q(z, y) (oriented triangle inequality ).

q′ given by q′(x, y)=q(y, x) is dual quasi-semi-metric to q.

(X, q) can be partially ordered by the specialization order :
x � y iff q(x, y) = 0. Discrete quasi-metric on poset (X,≤)
is q≤(x, y) = 1x>y; for (X, q≤), order � coincides with ≤.

A weak quasi-metric is a quasi-semi-metric q with
weak symmetry : q(x, y) = q(y, x) whenever q(y, x) = 0.

An Albert quasi-metric is a quasi-semi-metric q with
weak definiteness : x = y whenever q(x, y) = q(y, x) = 0.
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Quasi-metrics

A quasi-metric (or asymmetric, directed, oriented metric) is a
quasi-semi-metric q with definiteness : x = y iff q(x, y) = 0.
A quasi-metric space (X, q) is a set X with a quasi-metric q.
Asymmetric distances were introduced in Hausdorff, 1914.
Real world examples: one-way streets mileages, travel
time, transportation costs (up/downhill or up/downstream).

A quasi-metric q is non-Archimedean (or quasi-ultrametric ) if it
satisfy strengthened oriented triangle inequality

q(x, y) ≤ max{q(x, z), q(z, y)} for all x, y, z ∈ X.

Cf. symmetric: distance, semi-metric, metric, ultrametric.

For a quasi-metric q, the functions (qp(x,y)+qp(y,x))
1
p

2 , p≥1,

(usually, p = 1 and q(x,y)+q(y,x)
2 is called symmetrization of q),

max{q(x, y), q(y, x)}, min{q(x, y), q(y, x)} are metrics .
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Example: gauge quasi-metric

Given a compact convex region B ⊂ R
n containing origin,

the convex distance function (or Minkowski distance function ,
gauge ) is the quasi-metric on R

n defined, for x 6= y, by

qB(x, y) = inf{α > 0 : y − x ∈ αB}.

Equivalently, it is ||y−x||2
||z−x||2

, where z is unique point of the

boundary ∂(x + B) hit by the ray from x via y. It holds
B = {x ∈ R

n : qB(0, x) ≤ 1} with equality only for x ∈ ∂B.

If B is centrally-symmetric with respect to the origin, then
qB is a Minkowskian metric whose unit ball is B.
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Examples: quasi-metrics onR, R>0, S
1

Sorgenfrey quasi-metric is a quasi-metric q(x, y) on R,
equal to y − x if y ≥ x and equal to 1, otherwise.

Some similar quasi-metrics on R are:
q1(x, y) = max{y − x, 0} (l1 quasi-metric ),
q2(x, y) = min{y − x, 1} if y ≥ x and equal to 1, else,
Given a>0, q3(x, y) = y − x if y ≥ x and =a(x − y), else.
q4(x, y) = ey − ex if y ≥ x and equal to e−y − e−x, else.

The real half-line quasi-semi-metric on R>0 is max{0, ln y
x}.

The circular-railroad quasi-metric is a quasi-metric on the
unit circle S

1 ⊂ R
2, defined, for any x, y ∈ S

1, as the
length of counter-clockwise circular arc from x to y in S

1.
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Digression: quasi-metrizable spaces

A topological space (X, τ) is called quasi-metrizable space if
X admits a quasi-metric q such that the set of open q-balls
{B(x, r) : r > 0} form a neighborhood base at each x ∈ X.

More general γ-space is a topological space admitting a
γ-metric q ( a function q : X × X → R≥0 with q(x, zn) → 0 if
q(x, yn) → 0 and q(yn, zn) → 0) such that the set of open
forward q-balls {B(x, r) : r > 0} form a base at each x ∈ X.

The Sorgenfrey line is the topological space (R, τ) defined by
the base {[a, b) : a, b ∈ R, a < b}. It is not metrizable, 1st (not
2nd) countable paracompact (not locally compact) T5-space .
But it is quasi-metrizable by Sorgenfrey quasi-metric :

q(x, y) = y − x if y ≥ x, and q(x, y) = 1, otherwise.
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Digraph quasi-metric and metrics
A directed graph (or digraph ) is a pair G = (V,A), where V

is a set of vertices and A is a set of arcs.

The path quasi-metric qdpath in digraph G=(V,A) is, for any
u, v ∈ V , the length of a shortest (u − v) path in G.
Exp. : Web hyperlink quasi-metric (or click count ) is qdpath

between two web pages (vertices of Web digraph).

The circular metric (in digraph) is qdpath(u, v) + qdpath(v, u).

Chartrand-Erwin-Raines-Zhang, 1999: the strong metric
between u, v ∈ V is the minimum number of edges of
strongly connected subdigraph of G containing u and v.

Chartrand-Erwin-Raines-Zhang, 2001: the orientation
metric between 2 orientations D and D′ of a graph is the
minimum number of arcs of D whose directions must be
reversed to produce an orientation isomorphic to D′.
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Examples at large

In Psychophysics, the probability-distance hypothesis :
the probability with which one stimulus is discriminated
from another is a (continuously increasing) function of
some subjective quasi-metric between these stimuli.

Østvang, 2001, proposed a quasi-metric framework for
relativistic gravity.

The Thurston quasi-metric on the Teichmüller space Tg is
1
2 infh ln ||h||Lip for any R∗

1, R
∗
2 ∈ Tg, where h : R1 →2 is

a quasi-conformal homeomorphism, homotopic to the
identity, and ||.||Lip is the Lipschitz norm on the set of all
injective functions f : X → Y defined by
||f ||Lip = supx,y∈X,x6=y

dY (f(x),f(y))
dX(x,y) .
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Point-set distance and its applications

In a (quasi)-metric space (X, d), the point-set distance
between x ∈ X and A ⊂ X is d(x,A) = infy∈A d(x, y),
The function fA(x) = d(x,A) is distance map . Distance
maps are used in MRI (A is gray/white matter interface)
as cortical maps, in Image Processing (A is image
boundary), in Robot Motion (A is obstacle points set).

A ⊂ X is Chebyshev set if for each x ∈ X, there is unique
element of best approximation : y ∈ A with d(x, y) = d(x,A).
If A ⊂ X (usually, A is the boundary of a solid X ⊂ R

3),
skeleton of X is {x ∈ X : |{y ∈ A : d(x, y)=d(x,A)}| > 1},
i,e. all boundary points of Voronoi regions of points of A.

The directed Hausdorff distance (on compact subspaces
of (X, d)) is qdHaus(B,A) = supx∈B d(x,A). The Hausdorff
metric is dHaus(A,B) = max{qdHaus(A,B), qdHaus(B,A)}.
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A generalization: approach space

An approach space (Lowe, 1989) is a pair (X,D), where X is
a set, and D is a point-set function , i.e., a function
D : X × P (X) → [0,∞] (where P (X) is the set of all subsets
of X) satisfying, for all x ∈ X and all A,B ⊂ X, to:

1. D(x, {x}) = 0;

2. D(x, {∅}) = ∞;

3. D(x,A ∪ B) = min{D(x,A), D(x,B)};

4. D(x,A) ≤ D(x,Aǫ) + ǫ, for any ǫ ≥ 0
(here Aǫ = {x : D(x,A) ≤ ǫ} is “ǫ-ball" with the center x).

Any quasi-semi-metric space (X, q) is an approach space with
D(x,A) = miny∈A q(x, y) (usual point-set distance).
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Hausdorff distance

http://en.wikipedia.org/wiki/User:Rocchini
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II.Weightable q-s-metrics

and

eqivalent notions
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Weightable quasi-semi-metrics

A weightable quasi-semi-metric is a q-s-metric q on X

admitting a weight function w(x) ∈ R on X with
q(x, y) − q(y, x) = w(y) − w(x) for all x, y ∈ X,
i.e., q(x, y) + 1

2(w(x) − w(y)) is its

symmetrization semi-metric q(x,y)+q(y,x)
2 .

w(x) + C is also such weight function for any constant
C. If the set {q(x, y0) − q(y0, x)} is bounded, then weight
can be non-negative; then call
w′(x) = w(x)-miny∈X w(y) ≥ 0 normalized weight function .

Example . Let q be quasi-metric on X = V3 = {1, 2, 3} with
q21 = q23 = 2 and qij = 1 for other 1 ≤ i 6= j ≤ 3.
Then q is weightable with weight w(i)=1, 0, 1 for i=1, 2, 3.

q is weightable iff q(x, y)+w(x) is partial semi-metric .
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Partial semi-metrics
A function p : X × X → R≥0 with p(x, y) = p(y, x) is
a partial semi-metric (Matthews, 1992) if for all x, y, z ∈ X,
it holds 1) p(x, x) ≤ p(x, y) and
2) p(x, y) ≤ p(x, z)+p(z, y)-p(z, z) (sharp triangle inequality ).
If 1) is dropped, weak partial semi-metric . Example: (R≥0, x+y).
If, moreover, 2) is weakened to p(x, y) ≤ p(x, z)+p(z, y), then
p is a dislocated metric (or Matthews metric domain ).

Function p is a partial semi-metric iff q= p(x, y)-p(x, x) is a
weightable q-s-metric with w(x)=p(x, x) and p is partial metric
(i.e. T0-separation holds: x=y if p(x, x)=p(x, y)=p(y, y)=0)
iff, moreover, q is an Albert quasi-metric .
Güldürek and Richmond, 2005: every topology on a finite
set X is defined, for x ∈ X, by cl{x}={y ∈ X : y � x}, where
x � y means p(x, y)=p(x, x) for some partial semimetric p on
X. Not every one is so defined from a semimetric on X.
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Weak partial semi-metrics

A function p : X × X → R≥0 with p(x, y) = p(y, x) is a weak
partial semi-metric (Heckmann, 1997) if for all x, y, z ∈ X,
it holds p(x, y) ≤ p(x, z)+p(z, y)-p(z, z). For x=y, it gives

the weakening p(x, z) ≥ p(x,x)+p(z,z)
2 of p(x, z) ≥ p(x, x).

On any set X, d(x, y)=p(x, y)-p(x,x)+p(y,y)
2 , w(x)=p(x,x)

2 and
p(x, y)=d(x, y)+w(x)+w(y is a bijection between weak partial
semi-metrics p and weighted semi-metrics (d,w)
(w : X → R≥0). Moreover, p is partial metric iff d is metric.
In weak partial semi-metric space (X, p), define open ball
B(x, r)={y ∈ X : p(x, y) < r}. Call U ⊂ X open if for all x ∈ U

there is ǫ > 0 with B(x, ǫ) ⊂ U . The open sets form topology
with basis the balls B(x, r); in general, not T2 (Hausdorff).
Its specialization preorder induced by p is x � y if and only if
p(x, y) ≤ p(a, a). It is partial order iff p is weak partial metric.
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Digression on Semantics of Computation
A poset (X,x � y) is dcpo if it has a smallest element and
each directed subset A ⊂ X (i.e. A 6= ∅ and for any x, y ∈ A,
exists z ∈ A with x, y � z) has a supremum sup A in X.
Let XC be the set of compact x ∈ X, i.e. for each directed
subset A with x � sup A, there is a ∈ A with x � a.
A Scott domain is a dcpo where all sets {a ∈ XC : a � x} are
directed with sup=x and each consistent A ⊂ X (i.e. there
exists x ∈ X with a � x for all a ∈ A) has supremum in X.
Main examples: all words over finite aphabet with prefix
order, all vague real numbers (nonempty segments of R)
with reverse inclusion order, all subsets of N under inclusion
Quantitative Domain Theory : a "distance" between programs
(points of a semantic domain) is used to quantify speed (of
processing or convergence) or complexity of programs.
x � y (program y contains all info from x) is specialization
order (x � y iff p(x, y)=p(x, x)) for a partial metric p on X.
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Quantale-valued partial metrics

Scott’s domain theory gave partial order and non-Hausdorff
topology on partial objects in computation.
In computation over a metric space of totally defined
objects, partial metric models partially defined information:
p(x, x)>0 (=0) mean that object x is partially (totally ) defined.
A quantale is a complete lattice M with an associative binary
operation ∗ with x ∗∨i∈Iyi=∨i∈I(x ∗ yi), ∨i∈Iyi ∗ x=∨i∈I(yi ∗ x).
Kooperman-Mattews-Rajoonesh, 2004: any topology can
arise from a quantale-valued partial metric.
Another way to see: fuzzy non-reflexive equalities. Hohle,
1992: for a commutative quantale M=(M,≤, 1, 0,∨,∧, ∗),
multivalued (M -valued ) set is a set X equipped with a fuzzy
equality , i.e., a map E : X × X → M subject to E(x, x) = 1,
E(x, y)=E(y, x) and E(x, y) ∗ E(y, z) ≤ E(x, z) for x, y, z ∈ X.
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WQSMETn and PSMETn, wPSMETn

Clearly, all weightable quasi-semi-metrics on n-set
X = [n] = {1, 2, . . . , n} form a polyhedral convex cone of
dimension

(n
2

)

+ n =
(n+1

2

)

. Denote it by WQSMETn.
WQSMETn is the section of QSMETn by

(n
3

)

hyperplanes

xyzx = xzyx of relaxed symmetry defined next.

Denote by PSMETn and wPSMETn the cones of partial
and weak partial semi-metrics on n-points. They have
3
(n
3

)

+n2 and 3
(n
3

)

+
(n+1

2

)

facets, resp. They are relaxations of
(n
2

)

-dimensional cone SMETn of all n-points semi-metrics.
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Relaxed and cyclic symmetry

Quasi-semi-metric q on X has relaxed symmetry
(xyzx = xzyx) if for different x, y, z ∈ X it holds

q(x, y) + q(y, z) + q(z, x) = q(x, z) + q(z, y) + q(y, x), i.e.

q(x, y) − q(y, x) = (q(z, y) − q(y, z)) − (q(z, x) − q(x, z)),
Equivalently, q is weightable: fix point z0 and define
w(x) = q(z0, x) − q(x, z0).

Given k ≥ 3, quasi-semi-metric q is k-cyclically symmetric
if x1x2x3 . . . xkx1 = x1xkxk−1 . . . x2x1, for x1x2 . . . xk ∈ X.
The case k = 3 (relaxed symmetry) is equivalent to the
general case of any k ≥ 3. For example, for k = 4,
(x1x2x3x1-x1x3x2x1)+(x1x3x4x1-x1x4x3x1)=
x1x2x3x4x1-x1x4x3x2x1 and, in other direction,
(x1x2x3x4x1-x1x4x3x2x1)+(x1x2x4x3x1-x1x3x4x2x1)+
(x1x4x2x3x1-x1x3x2x4x1)=2 (x1x2x3x1-x1x3x2x1).
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Realizations by weighted (di)graphs

Any finite semi-metric d is the shortest path semi-metric
of a R≥0-weighted graph G.
G can be a tree iff d satisfy to 4-points inequality
d(x, y) + d(z, u) ≤ max{d(x, z) + d(y, u), d(x, u) + d(y, z)}.

Any finite quasi-semi-metric q is the shortest path
q-s-metric of a R≥0-weighted digraph G.
Patrinos-Hakimi, 1972 : G can be a bidirectional tree (a tree
with all edges replaced by 2 oppositely directed arcs) iff
q is weightable and q(x, y) + q(y, x) is tree-realizable.
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Weigtable hitting time quasi-metric

Given connected graph G = (V,E) with |E| = m, consider
random walks on G, where at each step walk moves with
uniform probability from current vertex a neighboring one.

The hitting time quasi-metric H(u, v) from u ∈ V to v ∈ V is the
expected number of steps (edges) for a random walk on G

beginning at u to reach v for the first time; put H(u, u) = 0.
This quasi-metric is weightable .

The commuting time metric is C(u, v) = H(u, v) + H(v, u).
It holds C((u, v) = 2mΩ(u, v), where Ω(u, v) is the effective

resistance metric : 0 if u = v and, else, 1
Ω(u,v) is the current

flowing into grounded v when potential 1 volt is applied to u

(each edge is seen as a resistor of 1 ohm). Ω(u, v) is

supf :V →R, D(f)>0
(f(u)−f(v))2

D(f) with D(f) =
∑

st∈E(f(s) − f(t))2.
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z0-derivations of semi-metrics

Given semi-metric space (X, d) and z0 ∈ X, its z0-derivation

is q-s-metric q(x, y)=1
2(d(x, y)+d(y, z0)-d(x, z0)). So, d=q + q′,

q is weightable with w(x)=d(x, z0)=q(z0, x) and d(x, z0))≡0.
Weightable q-s-metric q is z0-derivation of q+q′ iff d(x, z0))≡0

Quasi-metric q is z0-derivation of a metric d iff partial metric

p(x, y)=q(x, y) + w(x)) is 1
2(d(x, y)+d(y, z0)+d(x, z0)).

Clearly, z0-derivations of semi-metrics d ∈ SMETn for fixed
z0 = i ∈ X = [n] form a cone DiWQSMETn ⊂ WQSMETn.

Any inequality
∑

1≤i,j≤n aijdij ≥ 0, valid for d ∈ SMETn,
implies, valid for q ∈ Dz0

WQSMETn, inequality
∑

1≤i,j≤n aijqij +
∑

1≤i,j≤n aijd(j, z0)−
∑

1≤i,j≤n aijd(i, z0) ≥ 0.
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III.l1 quasi-metrics
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lp-quasi-metrics

On a normed vector space (V, ||.||), norm metric is ||x − y||.
The lp-metric is ||x − y||p norm metric on R

m (or on C
m):

||x||p=(
∑m

i=1 |xi|
p)

1

p for p ≥ 1 and ||x||∞= max1≤i≤m |xi|.
The Euclidean metric (or Pythagorean distance , as-crow-flies
distance , beeline distance ) is l2-metric on R

m.

lp-quasi-metric on R
m is z0-derivation of lp-metric with

z0=(0, . . . , 0), i.e. it is oriented lp-norm ||x − y||p, or=

(
∑m

i=1 |xi − yi|
p)

1

p + (
∑m

i=1 |yi|
p)

1

p − (
∑m

i=1 |xi|
p)

1

p and

lmp, or is the quasi-metric space (Rm, ||x − y||p, or),

lp-QSMETn is the set of all lp q-s-metrics on n points;
it is (as for semi-metrics) a cone exactly for p = 1,∞.

(l2-QSMETn)2={q2 : q ∈ l2-QSMETn} is a cone also.
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l1 and l∞ quasi-metrics

In particular, l1-quasi-metric on R
m
≥0 is

∑m
i=1(|xi − yi| + |yi| − |xi|) = 2

∑m
i=1 max{yi − xi, 0}

and l∞-quasi-metric is 2 max1≤i≤m max{yi − xi, 0}.

Any q-s-metric q on n points embeds in lm1, or for some m iff

q ∈ OCUTn (cone generated by all oriented cuts on [n]).

Any q-s-metric q on n points embeds into ln∞, or. In fact,
let v1, . . . , vn ∈ R

n be vi = (q(i, 1), q(i, 2), . . . , q(i, n)).
Then ||vi − vj ||∞, or = maxk(q(j, k) − q(i, k), 0) ≤ q(j, i),
while q(j, i) − q(i, i) = q(j, i); so, ||vi − vj||∞, or = q(j, i).

Exp. : on R≥0, to partial metric p(x, y)=max{x, y} correspond
l1 quasi-metric q(x, y)=max{x, y}-x= max{y-x, 0} (with w(x)=x)

and d(x, y)=q(x,y)+q(y,x)
2 = |x−y|

2 =p(x, y)- x+y
2 (twice l1 metric ).
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Embedding betweenlp quasi-metrics

Clearly, any isometric embedding f of semi-metric spaces
(X, dX) into (Y, dY ) is isometric embedding of z0-derivations
of (X, dX) into f(z0)-derivation of (Y, dY ).
So (as well as for semi-metrics), it holds:

Any lp-quasi-metric with 1 ≤ p ≤ 2 is a l1-quasi-metric.

Any l1-quasi-metric is the square of a l2-quasi-metric.

Any quasi-metric is a l∞-quasi-metric.

So, l2-QSMETn⊂l1-QSMETn⊂(l2-QSMETn)2 holds; it
generalizes l2-SMETn⊂l1-SMETn⊂(l2-SMETn)2, where,
for semi-metrics, (l2-SMETn)2 is the negative type cone
NEGn and l1-SMETn is the cut cone CUTn.
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Measure quasi-semi-metric versusl1

Given a measure space (Ω,A, µ), the symmetric difference
(or measure ) semi-metric on the set
Aµ = {A ∈ A : µ(A) < ∞} is µ(A△B) (where A△B=
(A ∪ B)\(A ∩ B) = (A\B) ∪ (B\A) is the symmetric
difference of sets A,B) and 0 if µ(A△B) = 0. Identifying
A,B ∈ Aµ if µ(A△B) = 0, gives the measure metric .
If µ(A) = |A|, then µ(A△B) = |A△B| is a metric.

Measure quasi-semi-metric on the set Aµ is z0-derivation of
the measure semi-metric for z0 = ∅, i.e. it is
q(A,B) = µ(A△B) + µ(B) − µ(A) = µ(B\A).

In fact (as well as in the metric case), a q-s-metric is
l1-quasi-metric if and only if it is a measure quasi-metric.
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n-cube: inclusion (Boolean) orientation

Label vertices of n-cube by numbers 0, . . . , 2n − 1; their
binary expansions label all subsets A of [n] = {1, . . . , n}.
Hasse diagram of the Boolean lattice 2[n] is inclusion-oriented
n-cube : do arc from A to B if A ⊂ B and |B\A|=1.
Its path quasi-semi-metric is |B\A| if A ⊂ B and =∞, else,
while Hamming semi-distance is l1 quasi-metric |B\A|, i.e.
|B\(B ∩ A)|=

∑n
i=1 max{1i∈B − 1i∈A, 0}=

∑n
i=1 1i∈B(1 − 1i∈A).
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IV.The cones

under consideration
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The cones under consideration

l1SMETn=CUTn=MCUTn=BSMETn⊂ SMETn=l∞SMETn;

l1QSMETn=OCUTn⊂WQSMETn⊂QSMETn=l∞QSMETn,
and OCUTn⊂OMCUTn⊂BQSMETn⊂QSMETn, where

MCUTn, OMCUTn are generated by multicuts, o-multicuts,
and BSMETn, BQSMETn are generated by {0, 1}-valued
semi-metrics, quasi-semi-metrics.

Also, l1-PSMETn=BPSMETn⊂PSMETn, where
PSMETn={p = ((pij = qij + wi))} : q = ((qij)) ∈ WQSMETn,
l1-PSMETn={p = ((pij = qij + wi))} : q = ((qij)) ∈ OCUTn,
and BPSMETn is generated by {0, 1}-valued p ∈ PSMETn.
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Oriented cut quasi-semi-metrics

Given a subset S of [n] = {1, . . . , n}, the oriented cut

quasi-semi-metric (or o-cut ) δ(S)
′

is a quasi-semi-metric on [n]:

δ
′

ij(S) = |(S ∩ {i})\(S ∩ {j})| =

{

1, if i ∈ S, j 6∈ S,

0, otherwise.

δ
′

(S) is, for any z0 ∈ S, z0-derivation of the cut semi-metric

δ(S)=δ
′

(S) + δ
′

([n]\S) (twice of symmetrization of δ
′

(S)).
Quasi-semi-metric δ

′

(S) is weightable with w(i) = 1i/∈S.

Oriented cut cone OCUTn is
(n+1

2

)

-dimensional subcone of

WQSMETn generated by 2n-2 non-zero o-cuts δ
′

(S) of [n].
OCUTn=l1-QSMETn, the cone of n points l1 q-s-metrics.
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Oriented multicut quasi-semi-metrics

Given an ordered partition {S1, . . . , St}, t ≥ 2, of [n], oriented

multicut quasi-semi-metric (or o-multicut ) δ
′

(S1, . . . , St) is:

δ
′

ij(S1, . . . , St) =

{

1, if i ∈ Sh, j ∈ Sm,m > h,

0, otherwise.

The multicut semi-metric δ(S1, . . . , St) is symmetrization
δ
′

(S1, . . . , St)+δ
′

(St, . . . , S1) of q-s-metric 2δ
′

(S1, . . . , St).

An o-multicut δ
′

(S1, S2) is exactly o-cut δ
′

(S1).
Lemma : o-cuts are exactly weightable o-multicut q-s-metrics
In fact, let i∈S1, j∈S2, k∈S3 in q-s-metric q=δ

′

ij(S1, . . . , Sq).
If q is weightable, then q(i, j) = w(j) − w(i) = 1. Impossible,
since q(i, k) = w(k) − w(i) = 1, q(j, k) = w(k) − w(j) = 1.
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Oriented cuts with n = 3

There are 7 oriented cut q-s-metrics on 3 points, given by
binary

(3
2

)

-vectors indexed as (12, 13; 21, 23; 31, 32):

δ
′

({∅}) = δ
′

({1, 2, 3}) = (0, 0; 0, 0; 0, 0),
δ
′

({1}) = (1, 1; 0, 0; 0, 0),
δ
′

({2}) = (0, 0; 1, 1; 0, 0),
δ
′

({3}) = (0, 0; 0, 0; 1, 1),
δ
′

({1, 2}) = (0, 1; 0, 1; 0, 0),
δ
′

({1, 3}) = (1, 0; 0, 0; 0, 1),
δ
′

({2, 3}) = (0, 0, 1, 0, 1, 0).
Example . Let again q be quasi-metric on X = V3 = {1, 2, 3}
with q21 = q23 = 2 and qij = 1 for other 1 ≤ i 6= j ≤ 3.
Then q = δ

′

({1}) + 2δ
′

({2}) + δ
′

({3}), i.e. q ∈ OCUT3.
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Oriented multicuts versus oriented cuts

There are 6 oriented multicuts on 3 points, in addition to 7
oriented cuts, listed above:

δ
′

({1}, {2}, {3}) = (1, 1; 0, 1; 0, 0),
δ
′

({2}, {1}, {3}) = (0, 1; 1, 0; 0, 0),
δ
′

({1}, {3}, {2}) = (1, 1; 0, 0; 0, 1),
δ
′

({2}, {3}, {1}) = (0, 0; 1, 1; 1, 0),
δ
′

({3}, {1}, {2}) = (1, 0; 0, 1; 1, 1),
δ
′

({3}, {2}, {1}) = (0, 0; 1, 0; 1, 1).
Every multicut is R≥0-linear combination of cuts, while any
oriented multicut with t > 2 is a R-linear but not R≥0-linear
combination of o-cuts, since it is non-weightable q-s-metric.

The number of oriented multicuts on [n] is ordered Bell
number Bo(n) (the sequence A00670 in Sloan’s OEIS).
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Linear description of QSMETn

cone dim. Nr. of ext. rays (orbits) Nr. of facets (orbits) diam.

OMCUT3

=QSMET3 6 12(2) 12(2) 2; 2

OMCUT4 12 74(5) 72(4) 2; 2

QSMET4 12 164(10) 36(2) 3; 2

OMCUT5 20 540(9) 35320(194) 2; 3

QSMET5 20 43590(229) 80(2) 3; 2

OMCUT6 30 4682(19) > 2.1 · 109(> 1.6 · 106) 2; ?

QSMET6 30 > 1.8 · 109(> 1.2 · 106) 150(2) ?; 2

The orbits are under the symmetry group Z2 × Sym(n): n!
permutations of [n] = {1, . . . , n} and the reversal (ij) → (ji).

QSMETn has n(n − 1)2 facets in 2 orbits: 6
(n
3

)

oriented
triangle inequalities and n(n − 1) inequalities q(x, y) ≥ 0.
Moreover, they are also facets of OCUTn and so, of cones
WQSMETn, OMCUTn and BQSMETn containing OCUTn.
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Cones on3 points (all 6-dimensional)

The cone OCUT3 of l1 q-s-metrics on 3 points coincides with
the cone of weightable quasi-semi-metrics WQSMET3.
It has 6 extreme rays in 2 orbits of sizes 3, 3 represented by
o-cuts δ

′

({1})=(1, 1; 0, 0; 0, 0) and δ
′

({1})=(0, 0; 1, 0; 1, 0),
and 9 = 6 + 3 facets represented by qij ≥ 0 and Trij,k ≥ 0.

Larger cone OMCUT3 = BQSMET3 = QSMET3 has 12
extreme rays in 3 orbits represented by two above o-cuts
and the o-multicut δ

′

({1}, {2}, {3}) = (1, 1; 0, 1; 0, 0),
and 12 = 6 + 6 facets represented by qij ≥ 0 and Trij,k ≥ 0.

Cone l1-PSMET3=PSMET3 has 13=1+3+3+3+3 extreme
rays represented by (1, 1; 1, 1; 1, 1), P (δ

′

({1})), P (δ′({1})),
P (δ({1})) = δ({1}) = δ′({1}) + δ′({1}, P (δ′({1}) + δ′({2}),
and 12=6+3+3 facets repr. by pij ≥ pii, Trij,k ≥ pkk, pii ≥ 0.
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Anti-o-multicut quasi-semi-metrics

Given proper partition {S1, . . . , St}, 2 ≤ t ≤ n, of {1, . . . , n},
anti-o-multicut q-s-metric (or anti-o-multicut ) α

′

(S1, . . . , St) is
1 − δ

′

ij(S1, . . . , St) if 1 ≤ i 6= j ≤ n and = 0, else.

It is a {0, 1}-valued q-s-metric, which is weightable iff t=2

(i.e. for anti-o-cut α
′

(S, S)) with weight function w(x) = 1x∈S .

Anticut semi-metric α(St, . . . , S1) = α
′

(S1, . . . , St)+α
′

(St, . . . , S1)
(twice symmetrization) is graph path-metric d(K|S1|,...,|St|).

For semi-metrics , SMETn = CUTn if n ≤ 4, and all extreme
rays of SMET5 are all 24 − 1 non-zero cuts and all

(5
2

)

anticuts α({a1, a2}, {a3, a4, a5}) (permutations of d(K2,3)).

Are α
′

, except α
′

({1}, [n]\{1})=
∑n

s=2 δ
′

({s}, [n]\{s}) and
α

′

({1}, . . . , {n})=δ
′

({n}, . . . , {1}) , extreme in QSMETn?
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Extreme rays ofQSMET4, QSMET5

QSMET4 has 164 extreme rays in 10 orbits. Among 8
{0, 1}-valued ones (116 ext. rays of BQSMET4), 5 are of 6=0

o-multicuts (74 ext. rays of OMCUT4), incl. o-cuts δ
′

({1}),
δ
′

({1, 2}) (14 ext. rays of OCUT4), and 3 of anti-o-multicuts

α
′

({1, 2}, {3, 4}), α
′

({1}, {2}, {3, 4}), α
′

({1}, {2, 3}, {4}).

QSMET5 has 229 orbits of extreme rays. Among 29

{0, 1}-valued ones , 9 are of all o-multicuts δ
′

(S1, . . . , St) 6=0

(including δ
′

({1}), δ
′

({1, 2})) and 7 are of anti-o-multicuts .
Only 3 {0, 1}-valued ones consist of weightable q-s-metrics :
2 above orbits of o-cuts and one of anti-o-cuts α

′

({1, 2}).
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ConesPSMETn and l1-PSMETn

cone dim. Nr. of ext. rays (orbits) Nr. of facets (orbits) diam.

CUT3=SMET3 3 3(1) 3(1) 1; 1

CUT4=SMET4 6 7(2) 12(1) 1; 2

CUT5 10 15(2) 40(2) 1; 2

SMET5 10 25(3) 30(1) 2; 2

CUT6 15 31(3) 210(4) 1; 3

SMET6 15 296(7) 60(1) 2; 2

l1-PSMET3=PSMET3 6 13(5) 12(3)

l1-PSMET4 10 44(9) 46(5)

PSMET4 10 62(11) 28(3)

l1-PSMET5 15 166(14) 585(15)

PSMET5 15 1696(44) 55(3)

l1-PSMET6 21 705(23)

PSMET6 21 337092(734) 96(3)
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{0, 1}-valued partial semi-metrics

All such elements of PSMETn are
∑

0≤i≤n

(n
i

)

B(n − i)

elements (
∑

0≤i≤n Q(i) orbits under Sym(n)) of the form
J(S0) + δ(S0, S1, . . . , St) = P (

∑

1≤i≤t δ′(Si)), where S0 is any
subset of [n] = {1, . . . , n} and S1, . . . , St is any partition of S0.

2n−1 +
∑

1≤i≤n−1

(n
i

)

B(n − i) among them (1 + ⌊n
2 ⌋+

∑

1≤i≤n−1 Q(i) orbits) represent extreme rays: ones with
t = 2 if S0 = ∅ (w.l.o.g. suppose Si 6= ∅ for 1 ≤ i ≤ t).
Here partition number Q(i) is the number of ways to write i as
a sum of positive integers;
Bell number B(i) is the number of partitions (multicuts) of [i],
while the numbers of cuts =2i−1, of o-cuts =2i, of o-multicuts
is ordered Bell number Bo(i) of ordered partitions of [i].
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{0, 1}-valued partial semi-metrics

See below p=((pij))=J({67})+δ({1}, {23}, {45}, {67})=P (q)

({0, 1}-valued extreme ray of PSMET7) and its q-s-metric
q=((qij=pij-pii))=δ({1})+ δ({23})+δ({45})+δ({67})
({0, 1}-valued non-extreme ray of WQSMET7).

0 1 1 1 1 1 1 0 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 0 1 1 1 1
1 0 0 1 1 1 1 1 0 0 1 1 1 1
1 1 1 0 0 1 1 1 1 1 0 0 1 1
1 1 1 0 0 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0

Uniqie orbit of simplicial (belong to
(n+1

2

)

-1 facets) 0, 1-valued
extreme rays of PSMETn consists of n rays

∑n
1,i 6=j δ′({i}),

1 ≤ j ≤ n, i.e. J({j})+δ({j}, S1, . . . , Sn−1) with all |Si|=1.
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Facets ofl1-PSMETn

Let b = (b1, . . . , bn) ∈ Z
n and

∑

(b) =
∑n

i=1 bi ∈ {0, 1}. Then
hypermetric inequality Hypp(b) :

∑

1≤i,j≤n bibjpij ≤
∑n

i=1 bipii

and, for max1≤i≤n |bi| ≤ 2, modular inequality

Ap(b) :
∑

1≤i,j≤n bibjpij ≤
∑n

i=1,bi 6=0(2 − |bi|)pii

are valid, for any p = ((pij)) ∈ l1-PSMETn.

PSMETn has 3 orbits of facets, represented by pii ≥ 0,
Hypp(1,−1, 0, . . . , 0) and Hypp(1, 1,−1, 0, . . . , 0).
l1-PSMET3=PSMET3.
l1-PSMET4, besides 3 orbits of PSMET4 has 2 orbits of
facets, represented by Hypp(1, 1,−1,−1), Ap(2, 1,−1,−1).
l1-PSMET5, besides 3 orbits of PSMET5, has 12 orbits of
facets includ. represented by Hypp(b) with b = (1, 1, 1,-1,-1),
(1, 1,-1,-1, 0), (1, 1, 1,-1,-2), (2, 1,-1,-1,-1) and Ap(b) with
b = (2, 1,-1,-1, 0), (2, 2,-1,-1,-1), (2, 1, 1,-1,-2), (3, 1,-1,-1,-1).
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V.Path quasi-metrics

of

oriented hypercubes

– p. 44/80



Generalities on orientedn-cubes

We consider only oriented (or unidirectional ) n-cubes , since
there is no bidirectional electrical/optical converter and
full-duplex transmission in optical fiber networks is costly.
The number of all orientations of n-cube H(n) is 2n2n−1

.

Robbins, 1939: connected graph has strong orientation (i.e.
strongly connected) if and only if it is bridgless.
The number of strong orientations of n-cube is unknown.

In n-cube (as in any oriented bipartite graph), any 2 directed
paths joining two fixed points have lengths equal modulo 2.
So, symmetrization q(x,y)+q(y,x)

2 of quasi-metric q=q(Q(n)) of
any its strong orientation Q(n) is integer-valued.

A vertex i in a n-cube is called even if its binary expansion
has even number of ones and odd , otherwise.
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O-diameter of orientedn-cube

Given a graph of diameter d and its strong orientation O,
oriented diameter (or o-diameter ) DO is maximal length of
shortest directed (u, v)-path.

Clearly, DO ≥ d; orientation O called tight if DO = d.

Chvatal-Thomassen, 1978: 2d2 + 2d ≤ maxO DO ≤ 5d2 + d.

Among strong orientations O of n-cube, minO DO = ∞, 3, 5
and n for n = 1, 2, 3 and (McCanna, 1988) n ≥ 4, resp.

For strong orientation O, d(u, v)=n implies qO(u, v)=n. It
suffice to show qO(0, 2n − 1)≤n. For 1≤i<n, exists ≥1 arc
(u, v) with i, i+1 ones in label {0, 1}-expansions of u, v.

Everett-Gupta, 1989: there exists an acyclic (not strong)
orientation of n-cube with finite length of shortest directed
(u, v)-path ≥ Fn+1 (Fibonacci number), i.e. > (3

2)n−1.
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Connectivity

Given a digraph D = (V,A), its vertex-connectivity κ (resp.
arc-connectivity λ) is the minimum number of vertices (resp.
arcs) needed to disconnect it. By Menger’s theorem
(max-flow-min-cut), κ (resp. λ) is minimum over u, v ∈ V of
the number of vertex- (resp. arc-) disjoint (u, v)-paths.

High connectivity of network D improve its fault-tolerance
and communication performance (routing, broadcasting).

An Hamilton (u, v)-path in a graph is (u, v)-path visiting any
vertex exactly once. In n-cube, it exists iff d(u, v) is odd.
A graph is k-vertex (resp. k-edge Hamiltonian ) if it remains
Hamiltonian after deleting any k vertices (resp. edges).

A (di)graph is Eulerian if exists a (directed) circuit visiting any
(arc) edge exactly once; eqv., it is (strongly) connected and
any vertex v has (indegree(v)=outdegree(v)) even degree.
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Mini-cubes Q(n)

1-cube Q(1) has two orientations.

0 1
2-cube Q(2) has two strongly connected orientations.

0

2 3

1
The symmetrization D(Q(2)) = ((Dij))=((1

2(qij + qji))) of
its quasi-metric q = ((qij)) is 2d(K4), while d(H(2)) = d(C4).
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3-cube: Chou-Du orientationQCD(3)

0

2 3

1

76

4 5
Chou-Du orientation QCD(n) come from 2 factors QCD(n − 1)
with mutually reversed orientations (above inside, outside
squares QCD(2)) and, on remaining matching, arcs from
each even vertex to its odd match. The symmetrization of
its quasi-metric qCD(3) is 2d(K8 − C0527 − C6341).
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3-cube: Chou-Du orientationQCD′(3)

0

2 3

1

76

4 5
For odd n ≥ 3, 2nd Chou-Du orientation QCD′(n) come from
two factors QCD(n − 1) with the same orientation (above
inside and outside squares QCD(2)) and, on remaining
mathching, again arcs from each even vertex to its odd
match. For even n, QCD′(n) = QCD(n).
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Chou-Du orientationsCD,CD′

Chou-Du, 1990: both Q(n), as communication network
(for high-speed computing using optical fibers as links),
have efficient routing and short delay since are small:
oriented diameter : n+1 for even n and n+2 for odd n > 1
(for CD), 5 for n=3 and n+1 for other n > 1 (for CD′) and

mean distance
n2n−1+2n( n−1

⌊n/2⌋)
2n−1 ,

n2n−1+(n−1)( n−1

⌊n/2⌋)+2

2n−1 (n odd).

Let C(x, y) be a largest set of vertex-disjoint (x, y)-paths
(max-container ), L(C(x, y)): longest path length in C(x, y).
Wide-diameter : max(x,y) minC(x,y) L(C(x, y)); ≥ o-diameter

Jwo-Tuan, 1998: CD, CD′ are maximally fault-tolerant,
since |C(x, y)| ≤ min(out(x), in(y)) become equality.

Lu-Zhang, 2002: wide-diameters of CD, CD′ are n + 2.
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Chou-Du orientation QCD(4)=QCD′(4)
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4-cube: McCanna orientationQMC(4)

McCanna, 1988, gave this tight (i.e. with oriented diameter
n = 4) orientation of 4-cube.
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Generalized McCanna orientation

For n ≥ 4, generalized McCanna orientation QMC(n) come from
2 factors QMC(n-1) with same orientation and, on remaining
matching, arcs from each even vertex to its odd match.
A vertex i in a n-cube is called even if its binary expansion
has even number of ones and odd , otherwise.

Its oriented diameter is minimal: n, i.e. QMC(n) is tight .

Its vertex - and arc-connectivity are maximal: κ=λ=⌊n
2 ⌋.

Fraigniaud-König-Lazard, 1992: it is Hamiltonian iff n ≥ 5.
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n-cube: signature-defined orientations

Given an orientation O of n-cube, its signature is ±1-valued
n-vector aO = (a1, a2, . . . , an) with ai = +1 if the edge (0, 2i)

is oriented in O by arc (0, 2i) and ai = −1 if this edge is
oriented by (incoming to 0) arc (2i, 0).
Excess of signature is the difference e between number of
1’s and −1’s in it. 0 is source if e = n and sink if e = −n.

An orientation is signature-defined if any its arc is uniquely
defined by arcs involving 0.
It is ||-defined if any its arc has the same orientation (from
even to odd vertex) as the parallel edge involving 0.
Cariolaro: ||-defined orientation is str. connected iff |e| < n.

Chou-Du orientation CD is ||-defined, while CD′, McCanna
and Hamiltonian orientations are only signature-defined.
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VI.Hamiltonian

orientations

of hypercubes
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Hamiltonian decomposition ofH(n)

Alspach-Bermond-Sotteau, 1990: edge-set of H(n) can be
decomposed into n

2 disjoint Hamilton cycles, if n is even,
and into n−1

2 Hamilton cycles and a perfect mathching, else.
For even n, H(n)=C4×. . .×C4 (n

2 times) ∼ 4-ary n
2 -cube.

Stong, 2006: for odd n, bidirected Qn decomposes into n

directed Hamilton cycles.
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Hamiltonian decomposition ofH(4)
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All Hamilton cycles of H(4)

Parkhomenko, 2001: 4-cube has 1344 Hamilton cycles.
See Hamilton cycle V ={vi}, 1≤i≤2n, as sequence t(V )=
{1 + lg2 |ti − ti+1|}, 1≤i≤2n, where ti is label of vi. Then
(up to Sym(4), reversals and cyclyc shifts) all cycles are:
A {8, 4, 2, 2}: 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 4;
B1 {6, 6, 2, 2}: 1 2 1 3 2 1 2 4 1 2 1 3 2 1 2 4,
B2 {6, 6, 2, 2}: 1 2 1 3 1 2 1 4 2 1 2 3 2 1 2 4;
C1 {6, 4, 4, 2}: 1 2 1 3 2 1 2 4 3 1 3 2 1 3 1 4,
C2 {6, 4, 4, 2}: 1 2 1 3 1 2 4 3 1 2 1 3 1 2 4 3,
C3 {6, 4, 4, 2}: 1 2 1 3 2 1 2 4 1 3 1 2 3 1 3 4,
C4 {6, 4, 4, 2}: 1 2 1 3 1 2 1 4 2 3 1 3 2 3 1 4,
C5 {6, 4, 4, 2}: 1 2 1 3 1 2 4 2 1 3 1 2 1 3 4 3;
D {4, 4, 4, 4}: 1 2 1 3 1 4 3 2 3 4 1 4 2 3 2 4.
Above class {a1, . . . , an} lists numbers ai of i in a cycle.
The edges not belonging to Hamilton cycle form C8+C4+C4,
C6+C6+C4, C10+C6 and C8+C4+C4 for A, B2, C1 and C5.
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Exp.: complementary Hamilton cycles

The sequence t(V ) = {1 + lg2 |ti − ti+1|}, 1≤i ≤ 24, of red
Hamilton cycle is given by: 4 3 2 4 3 4 1 3 4 3 2 4 3 4 1 3;
its permutation (4, 3, 1, 2) is: 2 1 3 2 1 2 4 1 2 1 3 2 1 2 4 1,
a cyclic shift of which is B1: 1 2 1 3 2 1 2 4 1 2 1 3 2 1 2 4.
Remaining edges form ∼B1: 1 3 2 1 2 4 1 2 1 3 2 1 2 4 1 2.
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Hamilton orientations of n=2m-cube

For any n = 2m and a decomposition of the edge-set of
2m-cube into m disjoint Hamilton cycles, call Hamilton

orientation any of 2m−1 orientations obtained by cyclically
orienting those m cycles. W.l.o.g. orient 1st cycle arbitrary.

Any Hamilton orientation is signature-defined: number ai

uniquely identifies outcoming (if ai=1) or incoming (if ai=-1)
to 0 Hamilton cycle and orientation on it. The number of 1’s
in its signature is n

2 = m, i.e. its excess e(aO) is 0.
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Orient arbitrarily 1st Hamilton cycle

Fix orientation of 1st (red) cycle and define orientation of
4-cube via orientation of 2nd (blue) Hamilton cycle.
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Hamilton orientation QB1(4)

The edge-set of H(4) decomposed into two complementary
Hamilton cycles with one (so, both) of type B1.
Orientation QB1(4) is defined by signature (−1, 1 − 1, 1).
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Hamilton orientation QB1(4)
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Hamilton orientation QB1′(4)

The edge-set of H(4) decomposed into two complementary
Hamilton cycles with one (so, both) of type B1.
Orientation QB1′(4) is defined by signature (1,−1 − 1, 1).
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Hamilton orientation QB1′(4)
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Ten Hamilton orientations of H(4)

Edge-complement of Hamilton cycle h of 4-cube is another
Hamilton cycle h∗ if and only if h = B1, C2, C3, C4, D;
moreover, h∗ ∼ h under Sym(4), shifting and reversals.

Orient h so to get arc (0, 1) on it. Let Oh be orientation of
H(4)= h+h∗ with arc (2, 0) on h∗ and by O′

h one with (0, 2).
So, signature is (1, 1,−1,−1) for all Oh, (1,−1,−1, 1) for O′

h

with h = B1, C1 and (1,−1, 1,−1) for O′
h with h = C3, C4, D.

O-diameter is 6 for QB1 and 5 for other 9. QC3 has minimal, 4,
|{(u, v) : q(u, v) = 5}| and mean q(u, v) (≈ 2.5); cf. 2 of H(4).

Conjecture : for any m, there exists a Hamilton orientation of
H(2m) with 2md(K4 × K4 × · · · × K4) (m times) being the
symmetrization of its quasi-metric. It holds for 2-cube
(unique strong orientation) and 4-cube (orientation QB1).
Remind that H(2m) = C4 × C4 × · · · × C4) (m times).
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Hamilton orientations OB(4), OB′(4)

Each Hamilton cycle V ={vi}, 1≤i≤2n, as sequence t(V )=
{1 + lg2 |ti − ti+1|}, 1≤i≤2n, where ti is label of vi, is
B1 {6, 6, 2, 2}: 1 2 1 3 2 1 2 4 1 2 1 3 2 1 2 4.
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Hamilton orientations OC2(4), OC2′(4)

Each cycle is C2 {6, 4, 4, 2}: 1 2 1 3 1 2 4 3 1 2 1 3 1 2 4 3.
Wrapped grid G comes from K4 × K4 on ((xij)) by adding
edges of C11,22,33,44, C12,21,43,34, C13,24,42,31, C14,23,41,32.

2d(G) is symmetrization of quasi-metric of OC2(4).
This quasi-metric differs from one of Chou-Du QCD(4) only
by permutation (4, 8)(5, 9)(6, 10)(7, 11) of vertices.

– p. 69/80



Hamilton orientations OC3(4), OC3′(4)

Each Hamilton cycle V ={vi}, 1≤i≤2n, as sequence t(V )=
{1 + lg2 |ti − ti+1|}, 1≤i≤2n, where ti is label of vi, is
C3 {6, 4, 4, 2}: 1 2 1 3 2 1 2 4 1 3 1 2 3 1 3 4.
In OC3(4), q(x, y)<5 except (x, y)=(2, 10),(5, 4),(11, 3),(12, 13).
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Hamilton orientations OC4(4), OC4′(4)

Each Hamilton cycle V ={vi}, 1≤i≤2n, as sequence t(V )=
{1 + lg2 |ti − ti+1|}, 1≤i≤2n, where ti is label of vi, is
C4 {6, 4, 4, 2}: 1 2 1 3 1 2 1 4 2 3 1 3 2 3 1 4.
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Hamilton orientations OD(4), OD′(4)

Each Hamilton cycle V ={vi}, 1≤i≤2n, as sequence t(V ), is
D {4, 4, 4, 4}: 1 2 1 3 1 4 3 2 3 4 1 4 2 3 2 4.
In OD(4), q(x, y)<5 except (x, y)=(0, 14),(6, 8),(10, 4),(12, 2)
and (3, 13),(5, 11),(9, 7),(15, 1). In OD′(4), q(x, y)=5 10 times.
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VII.Unique-sink

orientations

of hypercubes
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Inclusion (or Boolean) orientationQI(n)

Label vertices 0 ≤ x ≤ 2n − 1 of n-cube by subsets
Ax = {1 ≤ i ≤ n : xi = 1} of [n] = {1, . . . , n}.
Inclusion orientation QI(n): do arc AB if A ⊂ B and |B\A|=1.
Its path quasi-semi-metric is |B\A| if A ⊂ B and =∞, else,
while measure q-s-metric on (Ω = [n],A = 2[n], µ) is µ(B\A).
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Become strongly connected if add sink-souce arc (2n − 1, 0).
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Unique-sink orientations

An orientation of n-cube is called unique-sink orientation if
every face has unique sink.

Examples :

1) the inclusion orientation QI(n) and the arc-reversal of it
on any fixed matching (set of disjoint edges) M of n-cube;

2) every acyclic orientation with unique-sink on each 2-face ;

3) the Klee-Minty orientation QKM (n): if the binary expansions
of vertices x, x′ ∈ H(n) differ only in i-th position, then do
arc (xx′) if

∑

i≤j≤n xj is odd and arc (x′x), otherwise.
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3-cube: some unique-sink orientations
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Digression: Klee-Minty orientation

Klee-Minty orientation : if the binary expansions of vertices
x, x′ ∈ H(n) differ only in i-th position, then do arc (xx′) if
∑

i≤j≤n xj is odd and arc (x′x), otherwise.

It is acyclic unique-sink orientation; moreover, each face
has unique source.

It comes from combinatorial model (Avis-Chvatal, 1978) of
Klee-Minty cubes , 1972, i.e., linear programs whose
polytopes are deformed n-cubes (with skeleton of H(n)) but
for which some pivot rules follow path through all 2n vertices
and hence, need exponential number of steps.
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