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|.General

guasi-semi-metrics



fG

Iven a set X, a function g : X x X — R>q with g(x, x)=0 IS

Quasi-semi-metrics

=

a quasi-distance (or, In Topology, prametric ) on X.

9

A quasi-distance ¢ Is a quasi-semi-metric If for x,y,z € X
holds q(z,y) < q(x, 2) + q(z,y) (oriented triangle inequality ).

¢’ given by ¢'(x,y)=q(y, x) IS dual quasi-semi-metric to q.

(X, q) can be partially ordered by the specialization order :
x =y Iff g(x,y) = 0. Discrete quasi-metric on poset (X, <)
IS g<(z,y) = 1u>y; fOr (X, ¢<), order < coincides with <.

A weak quasi-metric IS @ quasi-semi-metric ¢ with
weak symmetry : q(z,y) = q(y, z) whenever ¢(y, z) = 0.

An Albert quasi-metric IS @ quasi-semi-metric ¢ with
weak definiteness : x = y whenever ¢(z,y) = q(y,x) = 0. J
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Quasi-metrics

fA quasi-metric (or asymmetric, directed, oriented metric) is aT
quasi-semi-metric ¢ with definiteness : x = y iff ¢(z,y) = 0.
A quasi-metric space (X, q) IS a set X with a quasi-metric g.
Asymmetric distances were introduced in Hausdorff, 1914.
Real world examples: one-way streets mileages, travel
time, transportation costs (up/downhill or up/downstream).

A quasi-metric ¢ IS non-Archimedean (Or quasi-ultrametric ) If it
satisfy strengthened oriented triangle inequality

q(z,y) < max{q(z, z),q(z,y)} forall z,y, z € X.
Cf. symmetric: distance, semi-metric, metric, ultrametric.

1

For a quasi-metric ¢, the functions (qp(x,y)+2qp(y,x))a , p>1,

(usually, p = 1 and Q(x’y);qw’x) IS called symmetrization of ¢),
max{q(z,y),q(y, )}, min{q(z,y),q(y, )} are metrics .
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Example: gauge quasi-metric

=

fGiven a compact convex region B C R"™ containing origin,
the convex distance function  (Or Minkowski distance function
gauge ) IS the quasi-metric on R™ defined, for = # y, by

qp(x,y) =inf{a >0:y —z € aB}.

Equivalently, it is 12=2l2 where » is unique point of the

[lz—2”
boundary d(z + B) hit by the ray from x via y. It holds
B ={x € R": qp(0,z) < 1} with equality only for x € 0B.

If B Is centrally-symmetric with respect to the origin, then
gp IS @ Minkowskian metric ' whose unit ball is B.

o -
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Examples: quasi-metrics onR, R-, S*

=

# Sorgenfrey quasi-metric 1S @ quasi-metric ¢(z,y) on R,
equal to y — x If y > x and equal to 1, otherwise.

# Some similar quasi-metrics on R are:
q1(x,y) = max{y — x,0} (/1 quasi-metric ),
q2(x,y) =min{y — z,1} if y > 2 and equal to 1, else,
Given a>0, ¢3(x,y) =y —z ify >z and =a(x — y), else.
qu(z,y) =€eY — e’ Ify > xrand equalto e ™ — e 7, else.

#® The real half-line quasi-semi-metric 0N R+ IS max{0,1n Z}.

# The circular-railroad quasi-metric IS a quasi-metric on the
unit circle S' C R?, defined, for any z,y € S!, as the
length of counter-clockwise circular arc from z to y in S'.

o -
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Digression: quasi-metrizable spaces
=

A topological space (X, 7) is called quasi-metrizable space if T
X admits a quasi-metric ¢ such that the set of open ¢-balls
{B(x,r):r > 0} form a neighborhood base at each x € X.

More general ~-space IS a topological space admitting a
v-metric ¢ (& function ¢ : X x X — R>q with ¢(z, z,) — 0 If
q(x,yn) — 0and q(yn, z,) — 0) such that the set of open
forward ¢-balls {B(z,r):r > 0} form a base at each = € X.

The Sorgenfrey line Is the topological space (R, 7) defined by
the base {|a,b) : a,b € R,a < b}. ItIis not metrizable, 1st (not
2nd) countable paracompact (not locally compact) T5-space .
But it is quasi-metrizable by Sorgenfrey quasi-metric

q(x,y) =y —xify >z, and q(z,y) = 1, otherwise.

o -
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Digraph guasi-metric and metrics

f.. A directed graph (or digraph ) Is a pair G = (V, A), where VT
IS a set of vertices and A Is a set of arcs.

® The path quasi-metric  ggpaen, IN digraph G=(V, A) Is, for any
u,v € V, the length of a shortest (v — v) path in G.
Exp.: Web hyperlink quasi-metric (O click count ) IS qgpath
between two web pages (vertices of Web digraph).

® The circular metric (I digraph) IS ggpatn (U, V) + qapatn (v, ).

# Chartrand-Erwin-Raines-Zhang, 1999: the strong metric
between u,v € V is the minimum number of edges of
strongly connected subdigraph of G containing « and v.

# Chartrand-Erwin-Raines-Zhang, 2001: the orientation
metric between 2 orientations D and D’ of a graph is the
minimum number of arcs of D whose directions must be
L reversed to produce an orientation isomorphic to D'. J
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# In Psychophysics, the probability-distance hypothesis

Examples at large

=

the probability with which one stimulus is discriminated
from another is a (continuously increasing) function of
some subjective quasi-metric between these stimuli.

@stvang, 2001, proposed a quasi-metric framework for
relativistic gravity.

The Thurston quasi-metric 0N the Teichmiiller space 1, IS
2 infy, In [|h]| i for any RY, R; € T,, where h: Ry —o IS
a guasi-conformal homeomorphism, homotopic to the
identity, and ||.||z;, IS the Lipschitz norm on the set of all

Injective functions f : X — Y defined by

dy (f(x),
[fllzip = supg ye x a2y (df;g(:g;,i)(y))'

-
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Point-set distance and its applications

f.o In a (quasi)-metric space (X, d), the point-set distance T
between z € X and A C X is d(z, A) = inf ca d(z,y),
The function f4(x) = d(x, A) Is distance map . Distance
maps are used in MRI (A is gray/white matter interface)
as cortical maps, in Image Processing (A is image
boundary), in Robot Motion (A Is obstacle points set).

® A C X Is Chebyshev set If for each x € X, there is unique
element of best approximation : y € A with d(x,y) = d(x, A).

If A c X (usually, A is the boundary of a solid X c R?),
skeleton of X iIs{x € X : |{y € A:d(x,y)=d(x, A)}| > 1},
l,e. all boundary points of Voronoi regions of points of A.

#® The directed Hausdorff distance (0N compact subspaces
of (X,d)) IS qirraus(B, A) = sup,cpd(x, A). The Hausdorff

\_ metric IS dHauS(Aa B) — maX{QdHaus(Aa B), QdHaus(Ba A)} J
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A generalization: approach space

An approach space (Lowe, 1989) is a pair (X, D), where X is T
a set, and D Is a point-set function , I.€., a function

D: X x P(X)— |0,00] (where P(X) Is the set of all subsets

of X) satisfying, forall x € X and all A, B C X, to:

1. D(z,{z}) =0;
D(z,{0}) = oo;
D(x, AU B) =min{D(x, A), D(x, B)};

D(x,A) < D(x, A°) + ¢, forany e > 0
(here A ={x: D(x,A) < €} Is “e-ball" with the center z).

Any quasi-semi-metric space (X, ¢) IS an approach space with
D(z, A) = min,ec 4 q(z,y) (Usual point-set distance).

o -
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Hausdorff distance

sup inf d(x, y)
reX YEY

sup inf d(z,y)

http://en.w ki pedi a. org/w ki / User: Rocchi ni

o -


http://en.wikipedia.org/wiki/User:Rocchini
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ll.Welghtable g-s-metrics
and

egivalent notions



Welightable quasi-semi-metrics

=

A weightable quasi-semi-metric IS @ g-S-metric ¢ on X
admitting a weight function w(x) € R on X with
q(x,y) —q(y,x) = w(y) —w(x) forall z,y € X,

i.e., q(z,y) + 3(w(z) —w(y)) is its

symmetrization semi-metric Q(x’y)_gq(y’x) :

w(x) + C'is also such weight function for any constant
C'. If the set {q(x,y0) — q(yo, )} IS bounded, then weight
can be non-negative; then call

w'(z) = w(x)-min,e x w(y) > 0 normalized weight function

Example . Let ¢ be quasi-metric on X = V3 = {1,2,3} with
q21:q23:2andqij:1f0r0ther1gi#jg&

Then ¢ is weightable with weight w(z)=1, 0, 1 for :=1, 2, 3.

q IS weightable iff ¢(z, y)+w(x) IS partial semi-metric . J
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Partial semi-metrics

 Afunction p: X x X — Rsg With p(z, y) = p(y, ) is -
a partial semi-metric  (Matthews, 1992) if for all x,y, z € X,
it holds 1) p(z,z) < p(z,y) and
2) p(x,y) < plx, 2)+p(z,y)-p(z, 2) (sharp triangle inequality ).
If 1) IS dropped, weak partial semi-metric . Example: (R>q, z+y).
If, moreover, 2) is weakened to p(x,y) < p(z, 2)+p(z,y), then
p IS a dislocated metric  (Or Matthews metric domain ).

Function p is a partial semi-metric iff g= p(z,y)-p(x, x) Iis a

weightable g-s-metric  With w(x)=p(z, z) and p IS partial metric

(i.e. Ty-separation holds: z=y if p(z, z)=p(x, y)=p(y, y)=0)

Iff, moreover, ¢ IS an Albert quasi-metric .

Guldurek and Richmond, 2005: every topology on a finite

set X is defined, for z € X, by cl{zx}={y € X : y <z}, where
Lx = y means p(z,y)=p(x, x) for some partial semimetric p onJ

X. Not every one is so defined from a semimetric on X.
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Weak partial semi-metrics

fA function p: X x X — R with p(z,y) = p(y, z) IS a weak T
partial semi-metric (Heckmann, 1997) if for all x,y, z € X,
It holds p(z,y) < p(z, 2)+p(z,y)-p(z, 2). For z=y, It gives

the weakening p(z, z) > p(x’x);p(z’z) of p(z, 2z) > p(z, x).

On any set X, d(z,y)=p(z, y)-p(x’x);p(y’y), w(x):]@ and
p(x,y)=d(x,y)+w(x)+w(y IS a bijection between weak partial
semi-metrics p and weighted semi-metrics (d, w)

(w: X — R>p). Moreover, p is partial metric iff d iIs metric.

In weak partial semi-metric space (X, p), define open ball
B(z,r)={y € X : p(x,y) <r}. Call U € X open ifforall z € U
there is e > 0 with B(z,¢) C U. The open sets form topology
with basis the balls B(x,r); in general, not 75 (Hausdorff).
ItS specialization preorder Induced by p iIs x < y If and only If
u?(x, y) < p(a,a). Itis partial order iff p Is weak partial metric.
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Digression on Semantics of Computatio

~ Aposet (X,z < y) is depo if it has a smallest elementand
each directed subset A C X (i.e. A # () and for any z,y € A,
exists z € A with z,y < z) has a supremum sup A in X.

Let X¢ be the set of compact = € X, i.e. for each directed
subset A with z < sup A4, there is a € A with z < a.

A Scott domain is a dcpo where all sets {a € X¢ : a < z} are
directed with sup=x and each consistent A C X (l.e. there
exists r € X with a < z for all « € A) has supremum in X.
Main examples: all words over finite aphabet with prefix
order, all vague real numbers (nonempty segments of R)
with reverse inclusion order, all subsets of N under inclusion
Quantitative Domain Theory : a "distance" between programs
(points of a semantic domain) is used to quantify speed (of
processing or convergence) or complexity of programs.

Lff < y (program y contains all info from z) Is specialization J

rder (xz =y Iff p(x,y)=p(zx, x)) for a partial metric p on X.
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Quantale-valued partial metrics

-

Scott’s domain theory gave partial order and non-Hausdorff
topology on partial objects in computation.

In computation over a metric space of totally defined
objects, partial metric models partially defined information:
p(x,x)>0 (=0) mean that object x is partially (totally ) defined.

A quantale IS a complete lattice M with an associative binary
operation x With x % V,;cryi=Vier(x *y;), Vieryi * t=V,ecr(y; * x).
Kooperman-Mattews-Rajoonesh, 2004: any topology can
arise from a quantale-valued partial metric.

Another way to see: fuzzy non-reflexive equalities. Hohle,
1992: for a commutative quantale M=(M, <,1,0,V, A, %),

multivalued (M -valued) set IS a set X equipped with a fuzzy
equality , .e.,amap £ : X x X — M subjectto E(x,x) =1,

\—E(x,y):E(y,x) and E(z,y) « E(y,z) < E(x,z) for z,y, z € X. J

=
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WQSMET, and PSMET,,, wPSMET,
B -

Clearly, all weightable quasi-semi-metrics on n-set
X =|n]={1,2,...,n} form a polyhedral convex cone of

dimension (3) +n = ("}'). Denote it by WQSMET,.
WQSMET, is the section of QSMET, by () hyperplanes

xyzx = xzyx Of relaxed symmetry defined next.

Denote by PSM ET,, and wPSM ET,, the cones of partial
and weak partial semi-metrics on n-points. They have
3(%)+n? and 3(%)+("") facets, resp. They are relaxations of

(g)-dimensional cone SM ET, of all n-points semi-metrics.

o -
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Relaxed and cyclic symmetry

f.o Quasi-semi-metric ¢ on X has relaxed symmetry T
(ryzx = xzyx) If for different =, y, z € X it holds

q(z,y) +q(y, z) +q(z,z) = q(z, 2) + q(z,y) + q(y, v), i.e.
q(z,y) —qly,r) = (q(z,y) — q(y,2)) — (a(z,7) — q(z, 2)),
Equivalently, ¢ is weightable: fix point z; and define
w(x) = q(z0,x) — q(x, zp).

#® Given k > 3, quasi-semi-metric g IS k-cyclically symmetric
If x12923 ... 001 = T1XLTp—1 ... Tox1, fOr T129 ... 28 € X.
The case k = 3 (relaxed symmetry) is equivalent to the
general case of any k > 3. For example, for k = 4,
(r1222321-T1230221 ) H(X1X3T421-T1 242321 )=
r1Tox3x4x1-r12423209x1 and, In other direction,
(z172237471-21 04032271 ) H (2122042371 -T1 2324271 )+

L (x124222321-2123222421)=2 (T12203T1-T123T2T1 ). J
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Realizations by weighted (di)graphs

- .

# Any finite semi-metric d is the shortest path semi-metric
of a R>g-weighted graph G.
(¢ can be a tree Iff d satisfy to 4-points inequality
d(z,y) + d(z,u) <max{d(z,z)+ d(y,u),d(x,u) + d(y, 2) }.

# Any finite quasi-semi-metric ¢ Is the shortest path
g-s-metric of a R>y-weighted digraph G.
Patrinos-Hakimi, 1972 . G can be a bidirectional tree (a tree
with all edges replaced by 2 oppositely directed arcs) iff
q IS weightable and q(z,y) + q(y, x) IS tree-realizable.
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Weligtable hitting time quasi-metric

fGiven connected graph G = (V, E) with |E| = m, consider
random walks on G, where at each step walk moves with
uniform probability from current vertex a neighboring one.

The nitting time quasi-metric ~ H (u,v) fromu € V tov € V is the
expected number of steps (edges) for a random walk on G
beginning at « to reach v for the first time; put H(u,u) = 0.
This quasi-metric is weightable .

The commuting time metric IS C(u,v) = H(u,v) + H(v,u).
It holds C'((u,v) = 2mQ(u,v), where Q(u,v) IS the effective
resistance metric : 0 if u = v and, else, o~ is the current

flowing into grounded v when potential 1 volt is applied to «
(each edge Is seen as a resistor of 1 ohm). Q(u,v) Is

sy pgnso LA with D) = Sep(f(5) = S0

=
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zo-derivations of semi-metrics

-

Given semi-metric space (X, d) and zy € X, ItS zy-derivation
is g-s-metric q(z, y)=1(d(z,y)+d(y, 20)-d(z, 20)). SO, d=q + ¢,
q 1S weightable with w(x)=d(x, z9)=q(z9, x) and d(zx, z9))=0.
Weightable g-s-metric ¢ is zg-derivation of ¢+¢’ iff d(z, z9))=0

Quasi-metric ¢ IS zg-derivation 0Of a metric d iff partial metric
p(z, y)=q(x,y) +w(z)) is 5(d(z, y)+d(y, 20)+d(z, 20))-

Clearly, zp-derivations of semi-metrics d € SM ET,, for fixed
20 =1 € X = |n] form a cone D;WQSMET,, Cc WQSMET,.

Any inequality » ., <, aijdij > 0, valid for d € SMET,,
implies, valid for ¢ € D, WQSM E'T,,, inequality
Zlgi,jgn aijqij+21§z’,jgn aijd(J, z0) — Z1gz‘,j§n aijd(t, z0) = 0.

o -
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I1l.[; quasi-metrics



-

# On a normed vector space (V,||.||), norm metric IS ||z — y||.

[,-quasi-metrics

=

The [,-metric is ||z — y||, norm metric on R™ (or on C™):

1
|2|[p=(>2i21 [2alP)? for p > 1 and |[z|]ee= maxi<i<m |7i.
The Euclidean metric  (Or Pythagorean distance , as-crow-flies
distance , beeline distance ) IS lo-metric on R™.

l,-quasi-metric on R™ Is zg-derivation of [,-metric with
20=(0,...,0), I.e. it Is oriented [,-norm ||z — y|

p,or—

(D imy lwe = wilP)r + Qi [wilP)» — (0232 |2ifP)» and
.. 1S the quasi-metric space (R™, ||z — y||p, or),

p, or

l,-QSMET, Is the set of all [, g-s-metrics on n points;
it Is (as for semi-metrics) a cone exactly for p = 1, oo.

L.p (lo-QSMET,)*={q¢* : q € 1>-QSMET,} is a cone also. J
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[; and [, quasi-metrics

- .

# |n particular, [;-quasi-metric 0N RT, 1S
> it (|2 =yl + |yil = |il) = 23255 max{y; — z;, 0}
and [..-quasi-metric IS 2 maxj<j<m, max{y; — x;,0}.

#® Any g-s-metric ¢ on n points embeds in [ 5 for some m iff
q € OCUT, (cone generated by all oriented cuts on n)).

# Any g-s-metric ¢ on n points embeds into 17, .. In fact,
let vy,...,v, € R" be v; = (q(¢,1),q(3,2), ... ,q(z n)).
Then Hvz - UjHoo,or — ma:z:k(q(j, k) — q(i,k),O) < Q(ja i)’
while Q(ja Z) _ Q(ivi) — Q(ja Z), S0, HU’L - UjHOO,or — Q(ja Z)

Exp.: on R>q, to partial metric p(x,y)=max{x,y} correspond
[1 quasi-metric q(w y)=max{x,y}-r= max{y-z,0} (With w(x)=x)

Land d(z,y)= ’y>+q<y x)—|x2y|—p(x, Y)- q’éﬂ (twice [; metric ). J
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Embedding between/, quasi-metrics

. .

learly, any isometric embedding f of semi-metric spaces
(X,dx) Into (Y, dy) Is iIsometric embedding of zy-derivations
of (X,dx) Into f(zg)-derivation of (Y, dy).
So (as well as for semi-metrics), it holds:

® Any l,-quasi-metric with 1 < p < 2 is a [;-quasi-metric.

# Any [i-quasi-metric is the square of a /,-quasi-metric.
# Any guasi-metric is a [,-quasi-metric.

S0, lo-QSMET,Cli-QSM ET,C (I>-QSM ET,)? holds; it
generalizes lo-SM ET,,Cli-SMET,C(l>-SM ET;,)?*, where,
for semi-metrics, (I5-SM ET;,)? is the negative type cone
NEG,, and l{-SM ET,, 1s the cut cone CUT,,.

o -
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Measure guasi-semi-metric versus;

-

# Given a measure space (2, A, 1), the symmetric difference
(or measure ) semi-metric on the set
A, ={A e A: pu(A) < oo} is u(AAB) (Where AAB=
(AUB)\(AN B) = (A\B) U (B\A) Is the symmetric
difference of sets A, B) and 0 If u(AAB) = 0. ldentifying
A, Be A, If u(AAB) = 0, gives the measure metric .
If u(A) =|A|, then u(AAB) = |AAB| Is a metric.

® Measure quasi-semi-metric  on the set A, IS zp-derivation of
the measure semi-metric for zyg = 0, i.e. it is
q(A, B) = p(AAB) + p(B) — p(A) = p(B\A).

In fact (as well as in the metric case), a g-s-metric Is
[1-quasi-metric if and only if It IS @ measure quasi-metric.

o -
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n-cube: inclusion (Boolean) orientation

fLabeI vertices of n-cube by numbers 0,...,2" — 1, their T
binary expansions label all subsets A of [n] ={1,...,n}.
Hasse diagram Of the Boolean lattice 2 is inclusion-oriented
n-cube: do arc from Ato Bif A C B and |B\ A|=1.
ItS path quasi-semi-metric IS |B\A| If A C B and =cc, else,
while Hamming semi-distance IS [} quasi-metric |B\ A|, 1.e.
IB\(BN A=) max{liep — Lica,0}=) ;1 Lien(1 — Lica).
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IV.The cones

under consideration



The cones under consideration

ilSMETn:CUTn:MCUTn:BSMETnC SMET,=l.ocSMET,: -

LQSMET,=OCUT,cWQSMET,cCQSMET,=l-cQSMET,,
and OCUT,,cOMCUT,CcBQSMET,CcQSMET,, where

MCUT,,,OMCUT, are generated by multicuts, o-multicuts,
and BSMET,,, BQSM ET,, are generated by {0, 1}-valued
semi-metrics, gquasi-semi-metrics.

Also, [\-PSMET,=BPSMET,CcPSMFET,,, where
PSMET,={p= ((pij = ¢ij + wi))} : ¢ = ((¢i5)) € WQSMET,,
11-PSMET,={p = ((pij = ¢ij +wi))} : ¢ = ((qg;5)) € OCUT,,
and BPSM FET, Is generated by {0, 1}-valued p € PSM ET,.

o -
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Oriented cut quasi-semi-metrics

-

Given a subset S of [n| = {1,...,n}, the oriented cut
quasi-semi-metric  (Or o-cut) 8(S)" is a quasi-semi-metric on [n]:

=

I, if i€8,j&58,
0, otherwise.

5;(S) = (SN {IH\(S N {5})] = {

§'(S) is, for any zy € S, zy-derivation of the cut semi-metric
5(9)=0'(S) + 4 ([n]\S) (twice of symmetrization of § (5)).
Quasi-semi-metric § (5) is weightable With w (i) = 1.
Oriented cut cone OCUT,, is ("‘51)-dimensional subcone of
WQSMET, generated by 2"-2 non-zero o-cuts 4 (S) of [n].
OoCUT,=l:-QSMFET,, the cone of n points [; g-s-metrics.

o
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Oriented multicut quasi-semi-metrics

L .

Given an ordered partiton  {.S1,...,S5:}, t > 2, of [n], oriented
multicut quasi-semi-metric  (OF o-multicut ) § (S1, ..., S;) is:

: 1, If 1€.5,,7€8,,m>h,
03 (51, -+ 5t) = { 0, otherwise.
The multicut semi-metric ~ 6(S1, ..., Sy) IS symmetrization
5 (Sh,...,8:)+5 (S, ...,S1) of g-s-metric 26 (S, ..., Sy).
An o-multicut § (51, S») is exactly o-cut § (S1).

Lemma: O-cuts are exactly weightable o-multicut g-s-metrics
In fact, let i€ Sy, j€Ss, keS3 in g-s-metric ¢=6;,(S1, ..., S,).
If ¢ Is weightable, then ¢(i, j) = w(j) — w(i) = 1. Impossible,
since q(i, k) = w(k) —w(i) =1,q(j, k) = w(k) —w(j) = 1.

o -
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Oriented cuts with n = 3

=

fThere are 7 oriented cut g-s-metrics on 3 points, given by
binary (3)-vectors indexed as (12, 13;21, 23; 31, 32):

5 ({0}) = 6 ({1,2,3}) = (0,0;0,0;0,0),
6 ({1}) =(1,1;0,0;0,0),
6 ({2}) =(0,0;1,1;0,0),
5'({3}) = (0,0;0,0;1,1),
5 ({1,2}) = (0,1;0,1;0,0),
5 ({1,3}) = (1,0;0,0;0,1),
5 ({2,3}) = (0,0,1,0,1,0).
Example . Let again ¢ be quasi-metric on X = V5 = {1, 2, 3}
with 21 = q23 = 2 and dij = 1 for other 1 < ¢ 7&] < 3.
Then g =0 ({1}) +20 ({2}) + 0 ({3}), i.e. ¢ € OCUTs.

o

(
(

-
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Oriented multicuts versus oriented cuts

fThere are 6 oriented multicuts on 3 points, in addition to 7 T
oriented cuts, listed above:

6 ({1}, {2}, {3}) = (1,1:0,1;0,0),

6 ({2}, {1}, {3}) = (0, 1;1,0;0,0),

5 ({1}, {3},{2}) = (1,1;0,0;0,1),

5 ({2}, {3}, {1}) = (0,0;1,1;1,0),
5 ({3},{1},{2}) (1,0;0,1;1,1),
0 ({3}, {2}, {1}) = (0,0;1,0;1,1).

Every multicut IS R>¢-linear combination of cuts, while any

oriented multicut with ¢ > 2 is a R-linear but not R>¢-linear
combination of o-cuts, since it is non-weightable g-s-metric.

The number of oriented multicuts on [n| is ordered Bell
Lnumber Bo(n) (the sequence A00670 in Sloan’s OEIS). J
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Linear description of QSM ET,

cone dim. Nr. of ext. rays (orbits) Nr. of facets (orbits) diam.
OMCUTs
=QSMETs 6 12(2) 12(2) 2; 2
OMCUT, | 12 74(5) 72(4) 2; 2
QSMET, 12 164(10) 36(2) 3; 2
OMCUTs 20 540(9) 35320(194) 2; 3
QSMETs 20 43590(229) 80(2) 3; 2
OMCUTs 30 4682(19) >2.1-10°(>1.6-10°%) | 2;?
QSMETg 30 | >1.8-10%(> 1.2-109) 150(2) ?; 2

The orbits are under the symmetry group Zs x Sym(n): n!
permutations of [n] = {1,...,n} and the reversal (ij) — (ji).

QSMET, has n(n — 1)* facets in 2 orbits: 6(’;) oriented
triangle inequalities and n(n — 1) inequalities ¢(z,y) > 0.

Moreover, they are also facets of OC'UT,, and so, of cones
WQSMET,, OMCUT, and BQSM ET, containing OCUT,,.

-
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Cones on3 points (all 6-dimensional)
. o

The cone OCUTj; of I g-s-metrics on 3 points coincides with
the cone of weightable quasi-semi-metrics WQSM ET5.

It has 6 extreme rays in 2 orbits of sizes 3, 3 represented by
o-cuts § ({1})=(1,1;0,0;0,0) and § ({1})=(0,0;1,0;1,0),

and 9 = 6 + 3 facets represented by ¢;; > 0 and T'r;; ;, > 0.

Larger cone OMCUT3 = BQSMET; = QSMET; has 12
extreme rays in 3 orbits represented by two above o-cuts

and the o-multicut ¢ ({1}, {2},{3}) = (1,1;0,1:0,0),
and 12 = 6 + 6 facets represented by ¢;; > 0 and T'r;; ;, > 0.

Cone [{-PSM ET3=PSM ET5 has 13=1+3+3+3+3 extreme
rays represented by (1,1:1,1:1,1), P(§ ({1})), P(6'({1})),
Po({1})) =d6({1}) = o'({1}) + o'({1}, P(8"({1}) +d'({2}),

 and 12=6+3+3 facets repr. by pi; > pii, Trijk > prs pii > 0.
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Anti-o-multicut quasi-semi-metrics

fGiven proper partition {S51,...,5;:},2 <t <n,of{l1,...,n}, T
anti-o-multicut g-s-metric ~ (OF anti-o-multicut ) & (51, ..., S:) is
—6;;(S1,...,8) f1<i#j<nand=0,else.

Itis a {0, 1}-valued g-s-metric, which is weightable iff =2
(i.e. for anti-o-cut o (S,5)) with weight function w(z) = 1,¢g.
Anticut semi-metric (.S, ..., S51) = oz/(Sl, L ,St)+oz/(St, ., 51)
(twice symmetrization) is graph path-metric d(K|51|,.__’|St|).

For semi-metrics , SMET,, = CUT,, If n < 4, and all extreme
rays of SM ETs are all 2* — 1 non-zero cuts and all (3)
anticuts a({a1,az2},1{as, a4, as}) (permutations of d( K> 3)).

Are o, except O/({l}a n\{1})= >4 0 ({s}, [n]\{s}) and
ch ({1},....{n})=0 ({n},....{1}) , extreme in QSMET,? o
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Extreme rays of QSMET,, QSMET:
B -

QQSMET, has 164 extreme rays in 10 orbits. Among 8
{0, 1}-valued ones (116 ext. rays of BQSM ETy), 5 are of #£0

o-multicuts (74 ext. rays of OMCUTY), incl. o-cuts § ({11),
5 ({1,2}) (14 ext. rays of OCUTy), and 3 of anti-o-multicuts

o ({1,2},{3,4}), o ({1}, {2}, {3.4}), o ({1}, {2, 3}, {4}).

QQSM E'Ts has 229 orbits of extreme rays. Among 29
{0, 1}-valued ones , 9 are of all o-multicuts 6,(31, 510

(including & ({1}), & ({1,2})) and 7 are of anti-o-multicuts .
Only 3 {0, 1}-valued ones consist of weightable g-s-metrics :

2 above orbits of o-cuts and one of anti-o-cuts o ({1, 2}).

o -
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ConesPSMZET, and [-PSME'T,

=

cone dim. | Nr. of ext. rays (orbits) | Nr. of facets (orbits) | diam.
CUT3=SMET3 3 3(1) 3(1) 1;1
CUTy=SMET, 6 7(2) 12(1) 1; 2
CUTs 10 15(2) 40(2) 1;2
SMETs 10 25(3) 30(1) 2; 2
CUTs 15 31(3) 210(4) 1;3
SMETg 15 296(7) 60(1) 2; 2
11-PSMETs=PSMET5 6 13(5) 12(3)
[1,-PSMETy 10 44(9) 46(5)
PSMETy 10 62(11) 28(3)
11-PSMET5 15 166(14) 585(15)
PSMET5 15 1696(44) 55(3)
11-PSMETgs 21 705(23)
PSMETg 21 337092(734) 96(3)
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{0, 1}-valued partial semi-metrics

=

All such elements of PSMET,, are 3, (7)B(n — i)

elements () _,-;,, @(i) orbits under Sym(n)) of the form
J(S()) + 5(3(), Si,. .. ,St) — P(Zlgigt 5/(32)), where Sy Is any

subset of [n] = {1,...,n} and Sy,...,S; is any partition of Sj.

2"1 + 3 1 <i<n (7) B(n — i) among them (1 + [ 5]+
> 1<i<n—1 @(7) orbits) represent extreme rays: ones with
t =2if Sy = 0 (w.l.o.g. suppose S; # 0 for 1 < i < ¢).

Here partition number  Q(7) IS the number of ways to write i as
a sum of positive integers,;

Bell number B(%) IS the number of partitions (multicuts) of [i],

while the numbers of cuts =2, of o-cuts =2¢, of o-multicuts
Lis ordered Bell number  Bo(i) of ordered partitions of [:]. J
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{0, 1}-valued partial semi-metrics

fSee below p=((pij))=J({67})+0({1},{23},{45},{67})=P(q) -
({0, 1}-valued extreme ray of PSM E'T;) and its g-s-metric
¢=((qij=pijpii))=0({1})+ 6({23})+0({45})+5({67})
({0, 1}-valued non-extreme ray of WQSM ETr).

O111111 O111111
1001111 1001111
1001111 1001111
1110011 1110011
1110011 1110011
1111111 0000000
1111111 0000000

Unigie orbit of simplicial (belong to ("3")-1 facets) 0, 1-valued
extreme rays of PSM ET, consists of n rays 7, 2 0'({i}),
1<j<nie J{GHH+({j} S, .., Snr) with all |S;|=1.
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Facets ofl{-PSMET,,
fLet b= (b1,...,bp) € Z™and > (b) =>."_, b; € {0,1}. Then T

hypermetric inequality Hyp,(b) : Zlgz‘,jgn bibipi; < > bibii
and, for max;<;<n |b;| < 2, modular inequality

Ap(b) 3 Z1gz’,j§n bibjpij < Z?’zl,bﬁéo@ - \bz’)pm
are valid, for any p = ((ps;)) € i-PSMET,,

PSMET, has 3 orbits of facets, represented by p;; > 0,
Hypy(1,-1,0,...,0) and Hyp,(1,1,—1,0,...,0).
Zl-PSMET3:PSMET3.
[1-PSM ET,, besides 3 orbits of PSM ET, has 2 orbits of
facets, represented by Hyp,(1,1,-1,-1), A,(2,1,—1,—1).
[1-PSM ETs, besides 3 orbits of PSM ETx, has 12 orbits of
facets includ. represented by Hyp,(b) with b = (1,1,1,-1,-1),
(1,1,-1,-1,0), (1,1,1,-1,-2), (2,1,-1,-1,-1) and A,(b) with

b= (2,1,1,-1,0), (2,2,-1,-1,-1), (2,1,1,1 2), (3,1,-1,-1-1).
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V.Path quasi-metrics
of

oriented hypercubes



Generalities on orientedn-cubes

fWe consider only oriented (Or unidirectional ) n-cubes, Since T
there is no bidirectional electrical/optical converter and
full-duplex transmission in optical fiber networks is costly.

The number of all orientations of n-cube H(n) is 272" .

Robbins, 1939: connected graph has strong orientation  (i.€e.
strongly connected) if and only if it is bridgless.
The number of strong orientations of n-cube is unknown.

In n-cube (as in any oriented bipartite graph), any 2 directed
paths joining two fixed points have lengths equal modulo 2.

S0, symmetrization Q(“’”y)‘ng’x) of quasi-metric ¢=¢(Q(n)) of
any Its strong orientation (n) Is integer-valued.

A vertex i in a n-cube is called even If its binary expansion
Lhas even number of ones and odd, otherwise. J
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O-diameter of oriented n-cube

fGiven a graph of diameter d and its strong orientation O, T
oriented diameter (Or o-diameter ) Do IS maximal length of
shortest directed (u, v)-path.

Clearly, Dy > d; orientation O called tight If Dy = d.
Chvatal-Thomassen, 1978: 2d? + 2d < maxp Do < 5d? + d.

Among strong orientations O of n-cube, minp Dy = o0, 3,5
and n forn =1, 2,3 and (McCanna, 1988) n > 4, resp.

For strong orientation O, d(u, v)=n implies qo(u,v)=n. It
suffice to show ¢p(0,2" — 1)<n. For 1<i<n, exists >1 arc
(u,v) with 7,7+1 ones Iin label {0, 1}-expansions of u, v.

Everett-Gupta, 1989: there exists an acyclic (not strong)
orientation of n-cube with finite length of shortest directed

L(u,v)-path > F,+1 (Fibonacci number), i.e. > (2)"1. J
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Connectivity

fGiven a digraph D = (V, A), its vertex-connectivity —x (resp. T
arc-connectivity ~ A) IS the minimum number of vertices (resp.
arcs) needed to disconnect it. By Menger’s theorem
(max-flow-min-cut), « (resp. A) Is minimum over u,v € V of
the number of vertex- (resp. arc-) disjoint (u, v)-paths.

High connectivity of network D improve its fault-tolerance
and communication performance (routing, broadcasting).

An Hamilton (u,v)-path In a graphis (u,v)-path visiting any
vertex exactly once. In n-cube, it exists iff d(u,v) is odd.
A graph is k-vertex (resp. k-edge Hamiltonian ) if it remains
Hamiltonian after deleting any k vertices (resp. edges).

A (di)graph is Eulerian If exists a (directed) circuit visiting any
(arc) edge exactly once; eqv., it is (strongly) connected and
- any vertex v has (indegree(v)=outdegree(v)) even degree.
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Mini-cubes Q(n)
-

1-cube (1) has two orientations.

O = O
0 1
2-cube @(2) has two strongly connected orientations.

2 3
) = O

A
!
0 1

The symmetrization D(Q(2)) = ((DZ])):(( (¢ii + 4ji)))
its quasi-metric ¢ = ((g;;)) is 2d(K4), while d(H(2)) =

o

of
d(Cy).



3-cube: Chou-Du orientationQ¢p(3)
- 7 o

O

e

O—F O
AN\
O -l O
4 S
Chou-Du orientation Q¢ p(n) come from 2 factors Qcop(n — 1)
with mutually reversed orientations (above inside, outside

squares Q¢p(2)) and, on remaining matching, arcs from
each even vertex to its odd match. The symmetrization of

its quasi-metric gop(3) is 2d(Ks — Cosar — Ceaar). .
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3-cube: Chou-Du orientation Q¢ (3)
- 6 7 o

R - O

5

For odd n > 3, 2nd Chou-Du orientation Q¢ p/(n) come from
two factors Qo p(n — 1) with the same orientation (above
Inside and outside squares Q¢ p(2)) and, on remaining
mathching, again arcs from each even vertex to its odd

Lmatch. For even n, Qcp/(n) = Qcp(n). J
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# Chou-Du, 1990: both Q(n), as communication network

Chou-Du orientationsC' D, C D’
=

(for high-speed computing using optical fibers as links),
have efficient routing and short delay since are small:

oriented diameter : n+1 for even n and n+2 forodd n > 1
(for C'D), 5 for n=3 and n+1 for other n > 1 (for C D’) and

2n—1_|_2 n—1 2n—1+ _1 n—1 +2
mean distance — anl(t”’m), - (zn_)l(L”/QJ) (n odd).

Let C(x,y) be a largest set of vertex-disjoint (z, y)-paths
(max-container ), L(C(z,y)): longest path length in C'(z, y).
Wide-diameter : max, .y ming(, .y L(C'(z,y)); > 0-diameter

Jwo-Tuan, 1998: C'D, C' D’ are maximally fault-tolerant,
since |C(z,y)| < min(out(x),in(y)) become equality.

Lu-Zhang, 2002: wide-diameters of CD, CD’ are n + 2. J
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Chou-Du orientation Qcp(4)=Qcpr(4)

-

=

®11

1Om
<




4-cube: McCanna orientation ) ;c(4)

fI\/I(:Canna, 1988, gave this tight (i.e. with oriented diameter T
n = 4) orientation of 4-cube.




Generalized McCanna orientation

o .

For n > 4, generalized McCanna orientation Q7o (n) come from
2 factors ;o (n-1) with same orientation and, on remaining
matching, arcs from each even vertex to its odd match.

A vertex ¢ in a n-cube is called even Iif its binary expansion
has even number of ones and odd, otherwise.

® |ts oriented diameter IS minimal: n, i.e. Qyrc(n) IS tight .
® |ts vertex - and arc-connectivity are maximal: k=A=|%].

# Fraigniaud-Konig-Lazard, 1992: it is Hamiltonian Iff n > 5.

o -
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n-cube: signature-defined orientations

L .

Given an orientation O of n-cube, its signature 1s =1-valued
n-vector ap = (a1, as, ..., a,) With a; = +1 if the edge (0, 2)
is oriented in O by arc (0,2') and a; = —1 if this edge is
oriented by (incoming to 0) arc (2¢,0).

Excess Of signature is the difference e between number of
I'sand —1'sinit. 0 1s source If e = n and sink If e = —n.

An orientation Is signature-defined If any Iits arc is uniquely
defined by arcs involving 0.

It is ||-defined If any its arc has the same orientation (from
even to odd vertex) as the parallel edge involving 0.
Cariolaro: ||-defined orientation is str. connected iff |e| < n.

Chou-Du orientation CD is ||-defined, while CD’, McCanna
and Hamiltonian orientations are only signature-defined.

o
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VI.Hamiltonian
orientations

of hypercubes



Hamiltonian decomposition of H(n)

fAlspach Bermond-Sotteau, 1990: edge-set of H(n) can be T
decomposed Into & disjoint Hamilton cycles, if n Is even
and into 2~ Hamllton cycles and a perfect mathching, else.
For even n, H( )=Cyx... xCy (5 times) ~ 4-ary $-cube.

Stong, 2006: for odd n, bidirected @), decomposes Into n
directed Hamilton cycles.

8 9

0 1
13
12
10 11
2 3
15
L ’ J

6 7
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Hamiltonian decomposition of H (4)

f 10 11
14 \O\ / O /
6 \20 O/ 3/ 7
7 NN
/O /4 5\0\
| / 12 13\Q

-



All Hamilton cycles of H(4)

- Parkhomenko, 2001: 4-cube has 1344 Hamilton cycles.

See Hamilton cycle V={v;}, 1<i<2", as sequence t(V)=
{1+ 1gy |t; — tiv1]}, 1<i<2™, where ¢; Is label of v;. Then
(up to Sym(4), reversals and cyclyc shifts) all cycles are:
A {8,4,2,2}; 1213121412131214
B1{6,6,2,2}: 1213212412132124,

B2 {6,6,2,2}; 1213121421232124;
Cl{6,4,4,2}: 1213212431321314,
c2{6,4,4,2}: 1213124312131243,
c3{6,4,4,2}: 1213212413123134,
C4{6,4,4,2}: 1213121423132314,
C5{6,4,4,2}: 1213124213121343;

D {4,4,4,4}: 121314323414232A4.

Above class {ay,...,ay,} lists numbers a; of 7 in a cycle.
The edges not belonging to Hamilton cycle form Cg+C4+Cy, J
6+CstCy, Ch0+Cs and Cs+Cy+Cy for A, B2, C1 and C5.
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Exp.: complementary Hamilton cycles

fThe sequence t(V) = {1 +1g, |t; — tiv1]}, 1<i < 24, of red T
Hamilton cycleis givenby: 4324341343243413;
Its permutation (4,3,1,2)1s: 2132124121321241,
a cyclic shiftof whichisBl: 1213212412132124.
Remaining edgesform ~B1: 1321241213212412.

8 9

0 1

A 13
12

10 11

15
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Hamilton orientations of n=2m-cube

o .

For any n = 2m and a decomposition of the edge-set of
2m~-cube into m disjoint Hamilton cycles, call Hamilton
orientation any of 2~! orientations obtained by cyclically
orienting those m cycles. W.l.o.g. orient 1st cycle arbitrary.

Any Hamilton orientation is signature-defined: number a;
uniquely identifies outcoming (if ¢;=1) or incoming (if a¢;=-1)
to 0 Hamilton cycle and orientation on it. The number of 1's
In Its signature Is § = m, I.€. ItS excess e(ap) IS 0.
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Orient arbitrarily 1st Hamilton cycle

fFix orientation of 1st (red) cycle and define orientation of T
4-cube via orientation of 2nd (blue) Hamilton cycle.

10 x /;O 11




Hamilton orientation ()p1(4)

fThe edge-set of H(4) decomposed into two complementaryT
Hamilton cycles with one (so, both) of type B1.
Orientation Q) ,(4) Is defined by signature (—1,1 —1,1).
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Hamilton orientation ()p1(4)

f 10 11
N o7
™N_ T
A 3
< y
Z” &z
</4 5

W o<

=
)




Hamilton orientation ()g/(4)

fThe edge-set of H(4) decomposed into two complementaryT
Hamilton cycles with one (so, both) of type B1.
Orientation Q)1/(4) Is defined by signature (1, —1 —1,1).
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Hamilton orientation ()g/(4)

f 10 O T
( 11
1 O X{A
RO —r
N_ W
2 3
7N
O O
| /4 5\}0
/ 12 13\}




Ten Hamilton orientations of H (4)

fEdge-compIement of Hamilton cycle h of 4-cube is another T
Hamilton cycle n* if and only if h = B1,(C2,C3,C4, D,
moreover, h* ~ h under Sym(4), shifting and reversals.
Orient h so to get arc (0,1) on it. Let O;, be orientation of
H(4)= h+h* with arc (2,0) on 2* and by O; one with (0, 2).
So, signature is (1,1,—1,—1) for all O, (1,—1,—-1,1) for O},
with h = B1,C1 and (1,—-1,1,-1) for O; with h = C3,C4, D.

O-diameter 1S 6 for (), and 5 for other 9. Q-3 has minimal, 4,
{(u,v) : q(u,v) =5} and mean ¢q(u,v) (= 2.5); cf. 2 of H(4).
Conjecture : for any m, there exists a Hamilton orientation of
H(2m) with 2™d(K4 x K4 x --- x Ky) (m times) being the
symmetrization of its quasi-metric. It holds for 2-cube

(unique strong orientation) and 4-cube (orientation () z1).
LRemind that H(2m) = Cy x Cy x --- x Cy) (m times). J
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Hamilton orientations Og(4), Op/(4)

fEa(:h Hamilton cycle V={v;}, 1<¢<2", as sequence ¢(V )=
{1+ 1gy |t; — tiv1]}, 1<i<2™, where t; IS label of v;, Is
B1{6,6,2,2}: 121321241213212A4.

-
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Hamilton orientations O¢s(4), Ocor(4)

=

fEa(:h cycleisc2{6,4,4,2}: 1213124312131243.
Wrapped grid G comes from K4 x K4 on ((x;;)) by adding
edges of C1122.33 44, C12.21,43 34, C13 24,42 31, C14,23 41 32
2d(G) I1s symmetrization of quasi-metric of Oco(4).

This quasi-metric differs from one of Chou-Du Qcp(4) only
by permutation (4, 8)(5,9)(6,10)(7,11) of vertices.

SN i " i
/A N
™N-—F 1N-—#T
N7 I_"L«\ /;___ij\
B Cam—\ F—N
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Hamilton orientations O¢3(4), O¢s(4)

e

{1+ 1gy |t; — tiv1]}, 1<i<2™, where t; IS label of v;, Is
121321241312313A4.

In Oc3(4), q(z,y)<5 except (z,y)=(2,10),(5,4),(11, 3),(12, 13).

C3{6,4,4,2}:

10 i‘{\“: /ﬁl,‘?
RN
6 \}0_._ O/ 3,/“7
T
/, 0 1 \ q\

711

ach Hamilton cycle V={v;}, 1<:<2", as sequence ¢(V )=

10 ,m: /ﬁl/:(
TN 2
6 \\O O{ 3/(“7
T
70 AN
A—N

-

711
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Hamilton orientations O¢4(4), Oy (4)

fEa(:h Hamilton cycle V={v;}, 1<:<2", as sequence (V)= T
{1+ 1gy |t; — tiv1]}, 1<i<2™, where t; IS label of v;, Is
ca{6,4,4,2}: 1213121423132314.

N—e N—o
bl i
rammmsy Pl




Hamilton orientations Op(4), Opi(4)
IS T

fEa(:h Hamilton cycle V={v;}, 1<i<2", as sequence (V)
D {4,4,4,4}: 121314323414232A4.
In Op(4), q(z,y)<5 except (z,y)=(0, 14),(6,8),(10, 4),(12, 2)
and (3,13),(5,11),(9,7),(15,1). In Op.(4), q(x,y)=5 10 times.

10 ,‘;-\0\ 4 011 10 ‘m: 4 511
™ LS N LA
ﬁl\}ﬁ_-_!s)/l? ﬁ\&_-_!s/(j
RN LI
2NN e N
Vs =N Va N
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VII.Unique-sink
orientations

of hypercubes



Inclusion (or Boolean) orientation Q);(n)

fLabeI vertices 0 < x < 2™ — 1 of n-cube by subsets T
Ar={1<i<n:z;=1}of [n] ={1,...,n}.
Inclusion orientation  @Qj(n): doarc ABIf A C B and |B\A|=1
ItS path quasi-semi-metric IS |B\A| If A C B and =cc, else,

while measure g-s-metric on (Q = [n], A = 2I") 1) is u(B\A).
m /7A11
PN\ /é 7%
GA\\ o\

P

NF

X
VN

0O
8 9

LBecome strongly connected if add sink-souce arc (2" — 1, O).J

V}‘/
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Unique-sink orientations

-

An orientation of n-cube is called unique-sink orientation
every face has unique sink.

If T

Examples .

1) the inclusion orientation @;(n) and the arc-reversal of it
on any fixed matching (set of disjoint edges) M of n-cube;

2) every acyclic orientation with unigue-sink on each 2-face ;

3) the Klee-Minty orientation Qg pr(n): If the binary expansions
of vertices x, 2’ € H(n) differ only in i-th position, then do
arc (za') if Y, ; is odd and arc (2'z), otherwise.

o -
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3-cube: some unigue-sink orientations

L L

= o O~ o
2 eO?/ AN eo3//‘\
\l/éo oe\cl)/
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Digression: Klee-Minty orientation

=

Klee-Minty orientation : If the binary expansions of vertices
x,x’ € H(n) differ only in i-th position, then do arc (x2’) if
Y i<j<nTj IS 0dd and arc (z'z), otherwise.

It is acyclic unigue-sink orientation; moreover, each face
has unigque source.

It comes from combinatorial model (Avis-Chvatal, 1978) of
Klee-Minty cubes , 1972, I.e., linear programs whose
polytopes are deformed n-cubes (with skeleton of H(n)) but
for which some pivot rules follow path through all 2" vertices
and hence, need exponential number of steps.
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