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I. (p, 3)-polycycles
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Polycycles

A (p, 3)-polycycle is a plane 2-connected finite graph with:

all interior faces are (combinatorial) p-gons,

all interior vertices are of degree 3,

all boundary vertices are of degree 2 or 3.

In more general (p, q)-polycycle, interior vertices have
degree q and boundary ones are of degree 2, . . . , q.
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Theorem

The skeleton of a plane graph is the graph formed by its
vertices and edges.
Theorem
A (p, 3)-polycycle is determined by its skeleton with the exception of the
Platonic solids, for which any of their faces can play role of exterior one

an unauthorized plane embedding
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(3, 3) and (4, 3)-polycycles

(i) Any (3, 3)-polycycle is one of the following 3 cases:

(ii) Any (4, 3)-polycycle belongs to the following 3 cases:

or belong to the following infinite family of (4, 3)-polycycles:

So, those two cases are trivial.
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Boundary sequences

The boundary sequence is the sequence of degrees
(2 or 3) of the vertices of the boundary.

Associated sequence is
3323223233232223

The boundary sequence is defined only up to action of
Dn, i.e. the dihedral group of order 2n generated by
cyclic shift and reflexion.

The invariant given by the boundary sequence is the
smallest (by the lexicographic order) representative of
the all possible boundary sequences.
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Enumeration of (p, 3)-polycycles

There exist a large litterature on enumeration of
(6, 3)-polycycles; they are called benzenoids.

benzene C6H6 naphtalene C10H8 azulene C10H8

Algorithm for enumerating (p, 3)-polycycles with n p-gons:

Compute the list of all p-gonal patches with n−1 p-gons

Add a p-gon to it in all possible ways

Compute invariants like their smallest (by the
lexicographic order) boundary sequence

Keep a list of nonisomorph representatives (we use
here the program nauty by Brendan Mc Kay)
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Enumeration of small (5, 3)-polycycles

n = 1

n = 2

n n n

1 1 6 18 11 1337

2 1 7 35 12 3524

3 2 8 87 13 9262

4 4 9 206 14 24772

5 7 10 527 15 66402

n = 3

n = 4
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What boundary says about its filling(s?)

The boundary of a (p, 3)-polycycle defines it if p = 3, 4.

A (6, 3)-polycyle is of lattice type if its skeleton is a
partial subgraph of the skeleton of the partition {63}
of the plane into hexagons. Such (6, 3)-polycycles
are uniquely defined by their boundary sequence.

From Euler formula, for any (p, 3)-polycycle, its
boundary defines uniquely the number fp of p-gons:

If p 6= 6, then fp = v2−v3+5
p−6 and vint = 2(v2−p)−(p−4)v3

p−6 .
If p = 6, then f6 is also defined uniquely and v2 = 6 + v3.
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II. (p, 3)-polycycles

with given boundary
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The filling problem

Does there exist (p, 3)-polycycles with given boundary
sequence?

If yes, is this (p, 3)-polycycle unique?

Find an algorithm for solving those problems
computationally.

Remind, that the cases p = 3 or 4 are trivial.
Let p = 5; consider, for example, the sequence 2323232323
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2 equi-boundary (5, 3)-polycycles

Boundary sequence: 12, 26 vertices of degree 2, 3, resp.
Symmetry groups: of boundary: C2v, of polycycles: C2.

Fillings: 20 pentagons, 12 interior points.
It is unique ambiguous boundary with f5 ≤ 20 = 4 × 5.
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2 equi-boundary (6, 3)-polycycles

Boundary sequence: 40, 34 vertices of degree 2, 3, resp.
Symmetry groups: of boundary: C2v, of polycycles: C2.

Fillings: 24 hexagons, 12 interior points.
It is unique ambiguous boundary with f6 ≤ 24 = 4 × 6.
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Ambiguous boundary for any p ≥ 6

Boundary sequence is:
b = u2p−1u3p−6u2p−1u3p−6

u = (23p−4)p−12;
6p−2 vertices of degree 3

and 4p2−18p+4 of degree 2.

Symmetry groups are:
of boundary: C2v,
of polycycles: C2.

This boundary admits two isomorphic (p, 3)-fillings
(having 4p p-gons and 2p interior 3-valent vertices).

Boundaries, admitting two non-isomorphic (p, 3)-fillings,
can be obtained by adding one p-gon.
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Equi-boundary pairs of (p, 3)-polycycles

M. Zheng (c. 2000, unpublished): the original example -
two equi-boundary (6, 3)-polycycles with 25 hexagons.

G.Brinkmann, O.Delgado-Friedrichs and U. von
Nathusius (2004): equi-boundary (p, 3)-polycycles have
the same number fp of p-gons.
So, let Np(k) be the number of such pairs with k p-gons.

M.Deza, M.Shtogrin and M.Dutour (2005):
proved Np(k) > 0 for k ≥ 4p ≥ 20, and
conjectured Np(k) = 0 for k < 4p.
The conjecture holds for p = 5; moreover,
N5(k) = 1, 3, 17,≥ 17 for k = 20,= 21,= 22,≥ 23.

X.Guo, P.Hansen and M.Zheng (2002): the conjecture
holds for p = 6; moreover, N6(k) = 1,≥ 1 for k = 24,≥ 25.
Zheng et al. found all (6, 3)-polycycles with ≤ 20 6-gons.
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Equi-boundary (3, 5)-fillings

Two different (but isomorphic as maps) (3, 5)-fillings
of the same boundary (43445544345)2

(by 36 triangles and 30 int. vertices).
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Equi-boundary (3, 5)-fillings

Two non-isomorphic (3, 5)-fillings of the same boundary
(34345)252(34345)252 (by 34 triangles and 30 int. vertices).
Their symmetry is C2 as of the boundary. This boundary

might be minimal for the number f3 of triangles and/or vint.
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Many equi-boundary (p, 3)-fillings

8 (6, 3)-fillings come by two fillings of those 3 components;
same aggregating gives arbitrarly large number for p ≥ 6.
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n + 1 equi-boundary (5, 3)-fillings

Theorem: the boundary 2235n+12235n+32235n+12235n+3

admits exactly n + 1 different (5, 3)-fillings
(by 20n + 6 pentagons and 20n + 2 interior vertices).
Each such k-th filling, 0 ≤ k ≤ n, is obtained
by gluing two (elementary (5, 3)-polycycles) E1 and adding
to the 4 open edges (i.e., with 2-valent end-vertices) of
E1 + E1, respectively, chains of k, n − k, k and n − k

(elementary (5, 3)-polycycles) C1.

E1: (223)3 C1: (223333)2
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Decomposition theorem

Theorem: Any (R, q)-polycycle is uniquely decomposed
into elementary (R, q)-polycycles along its bridges.

In other words, any (R, q)-polycycle is obtained by
gluing some elementary (R, q)-polycycles along open
edges.
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Possible filling

Let us illustrate the algorithm for the simplest case p = 5.
In some cases we can complete the patch directly.
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Possible filling

Let us illustrate the algorithm for the simplest case p = 5.
In some cases we can complete the patch directly.

But in some cases more is needed:
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Different possible options
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Different possible options

or
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Different possible options

or

– p. 22/53



Algorithm

A patch of p-gonal faces is a group of faces with one or
more boundaries.
Take a boundary of a patch of faces. Then:

1. Take a pair of vertices of degree 3 on the boundary and
consider all possible completions to form a p-gon.

2. Every possible case define another patch of faces.
Depending on the choice, the patch will have one or
more boundaries.

3. For any of those boundaries, reapply the algorithm.

This algorithm is a tree search, since we consider all
possible cases.

– p. 23/53



An example of a search
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An example of a search
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Another possible search

– p. 25/53



Another possible search
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Another possible search
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Another possible search
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Another possible search
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Possible speedups

Limitation of tree size:
Do all “automatic fillings” when there are some.
Then, we can select the pair of consecutive vertices
of degree 3 with maximal distance between them.

Kill some branches if :
fp or x are not non-negative integers (they are
computed from the boundary sequence by Euler
formula).
two consecutive vertices of degree 3 do not admit
any extension by a p-gon.

The combination of those tricks is insufficient in many
cases. For the enumeration of the maps Mn(p, q) below, this
is the critical bottleneck.
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III. maps of p-gons

with a ring of q-gons
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The problem

A Mn(p, q) denotes a 3-valent plane graph having only
p-gonal and q-gonal faces, such that the q-gonal faces form
a ring, i.e. a simple cycle, of length n.
Theorem: One has the equation

((4 − p)(q − 4) + 4)n + (6 − p)(x + x′) = 4p

with x and x′ being the number of interior vertices in two
(p, 3)-polycycles defines by the ring of n q-gons.

M. Deza and V.P. Grishukhin, Maps of p-gons with a ring of q-gons,
Bull. of Institute of Combinatorics and its Applications 34 (2002) 99–110.
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Classification theorem

Main Theorem
Besides the cases (p, q)=(7, 5) and (5, q) with q ≥ 8, all such maps
are known;
If q = 4, then the map is Prismp=n; from now, let q ≥ 5.

If p = 3, two possibilities:

M2(3, 6)(D2h) M3(3, 4)(D3h)
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Casep = 4

If p = 4, two possibilities:

M2(4, 8)(D2h) M3(4, 6)(D3h)

and an infinite serie
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Casep = 5

If q = 5, then this is Dodecahedron
If q = 6, then five possibilities:

5, D5h;6,6 6, D2;6,6 6, D3d;6,6

8, D2d;6,6 10, D2;6,6

If q = 7, then ten possibilities

If q ≥ 8, we expect infinity of possibilities
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All Mn(5, 7)

4, D2d;8,8 10, C2v;12,10 12, C2;10,14

12, C1;13,11 12, D2;12,12 12, S4;12,12
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16, D2;14,14 16, D2;14,14

20, D2;16,16 20, C2;16,16
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Casep = 6

If p = 6, then q = 5. There are four possibilities:

12, D2d;4,4 12, D3d;6,6

12, D6d;7,7 12, D2;6,6
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Two remaining undecided cases
If p = 7, then q = 5 and n − (x + x′) = 28. Two examples:

28, D2;8,8 30, D3;9,9
The remaining undecided case is Mn(5, q) with q ≥ 8.

Hadjuk and Soták found an infinity of maps Mn(7, 5),

Madaras and Soták found infinity of maps Mn(5, q) for
q = 10 and q ≡ 2, 3 (mod 5), q ≥ 8.
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Enumeration techniques
Harmuth enumerated all 3-valent plane graphs with at
most 84 vertices, faces of gonality 5 or 7 and such that
every faces of gonality 7 is adjacent to two faces of
gonality 7 (i.e. 7-gons are organised into disjoint simple
cycles). It gives all Mn(5, 7) with n ≤ 16.

Remaining case 17 ≤ n ≤ 20 is treated by following
algorithm:

Generating
patches

Adding ring of q

gons
completing (if

possible).
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Known Mn(5, 8)

3, D3h;9,9 4, D2d;10,10 8, C2;10,18

9, Cs;19,11 10, C2v;10,22 10, C2;14,18
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11, C1;20,14 12, C2;26,10 12, C2;14,22

12, C2;14,22 12, C1;21,15 13, C1;15,23
– p. 38/53



14, C2;28,12 16, C1;30,14

18, C2;14,34 18, C3;33,15
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Known Mn(5, 9)

6, C2;10,20 10, C2;34,8

12, C2;40,8 12, C3;39,9
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12, C2;38,10 12, C2;38,10

12, C1;38,10
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Known Mn(5, 10)

2, D2h;10,10 6, C2;12,24 6, C2v;14,22

6, Cs;13,23 6, C2;14,22 6, C2v;12,24
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6, C1;15,21 12, C1;11,49 14, C2;58,10

14, C1;11,57 14, C1;11,57 14, C1;11,57
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All parameters (p, q)

(p, q) n maps

(p ≥ 3, 4) p 1(Prismp)

(3, 6) 2 1

(4, 5) 4 1

(4, 6) 3, 4 2

(4, 7) 4 1

(4, 8) 2, 4 2

(4, q > 8) 4 1

(6, 5) 12 4(full.)

(p, q) n maps

(5, 5) 5, 6 3(Dode.)

(5, 6) 5, 6, 8, 10 5(full.)

(5, 7) 4, 10, 12, 16, 20 10(azu.)

(5, 8) ≥ 3 ≥ 16

(5, 9) ≥ 6 ≥ 7

(5, 10) ≥ 2 ≥ 2

(5, q > 10) ≥ 2 ?

(7, 5) ≥ 28 ≥ 2(azu.)
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IV. Generalizations
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Several rings

A Mn1,...,nt
(p, q) denotes a 3-valent plane graph with p-gons

and q-gons, where q-gons form t rings of length n1, . . . , nt

(equiv. each q-gon is adjacent exactly to two q-gons).
Theorem: One has the equation

(4 − (4 − p)(4 − q))
∑

i

ni + (6 − p)(x1 + x2) = 4p, , where

x1 is the number of vertices incident to 3 p-gonal faces and

x2 the number of vertices incident to 3 q-gonal faces.

➠ finiteness for (4, q), (5, 6), (5, 7) but we have infinity for
(6, 5) and, possibly, for (5, q), q ≥ 8.
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The case(p, q)=(5, 6) (fullerenes)

All maps M...(5, 6) are:

five maps with one ring of 6-gons,

following three maps with two rings of 6-gons:

D3h; 32 C3v; 38 D5h; 40
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Two rings of 7-gons filled by5-gons

C2h; 44 D3; 44 D5d; 60

D5h; 60 D3d; 68 D3; 68
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Two rings of 7-gons filled by5-gons

D2; 68 D2; 68 D2; 68

D2; 68 C2h; 76 T ; 68
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Remaining graphsM...(5, 7) (azulenoids)

C2v; 76 C3v; 80 C3v; 92

D5d; 100
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The case(p, q)=(6, 5) (fullerenes)

All maps M...(6, 5) are:

four maps with exactly one ring of 5-gons,

the maps:

special map

infinite family: 4
triples of

pentagons

infinite family:
t ≥ 1 concentric

6-rings of
hexagons
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Infinite families

For any t ≥ 0, there exists a map M3,...,3(5, 8) (with t 3-rings
of 8-gons) and a map M2,...,2(5, 10) (with t 2-rings of 10-gons)
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k-valent maps

A Mk
n(p, q) denotes a k-valent map with p-gons and q-gons

only, where q-gons form a ring of length n.

The only M4
n(p, 3) is p-gonal antiprism.

All M4
n(3, 4) are:

D4h; 10 D3d; 12
D2; 12 D2d; 14

There is only one other M4
...(3, 4); it has two rings of

4-gons, 14 vertices and symmetry D4h.
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