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Polycycles

A (p, 3)-polycycle is a plane 2-connected finite graph with:

Interior faces are (combinatorial) p-gons,
Interior vertices are of degree 3,
boundary vertices are of degree 2 or 3.

In more general (p, ¢)-polycycle, interior vertices have
degree ¢ and boundary ones are of degree 2, ... ,q.
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Theorem

-

The skeleton of a plane graph is the graph formed by its
vertices and edges.

Theorem

A (p, 3)-polycycle IS determined by its skeleton with the exception of the
Platonic solids, for which any of their faces can play role of exterior one

=

an unauthorized plane embedding
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(3,3) and (4, 3)-polycycles
-

(i) Any (3, 3)-polycycle is one of the following 3 cases:

< <> A

(i) Any (4, 3)-polycycle belongs to the following 3 cases:

S

or belong to the following infinite family of (4, 3)-polycycles:

O D

So, those two cases are trivial.
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Boundary sequences

fThe boundary sequence is the sequence of degrees T
(2 or 3) of the vertices of the boundary.

)/—‘.

Associated seguence Is
3323223233232223

# The boundary sequence is defined only up to action of
D, 1.e. the dihedral group of order 2n generated by
cyclic shift and reflexion.

# The invariant given by the boundary sequence is the
smallest (by the lexicographic order) representative of
the all possible boundary sequences.
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Enumeration of (p, 3)-polycycles

fThere exist a large litterature on enumeration of T
(6, 3)-polycycles; they are called benzenoids.

DG OIS

benzene C¢Hg naphtalene CigHg azulene CigHsg
Algorithm for enumerating (p, 3)-polycycles with n p-gons:

# Compute the list of all p-gonal patches with n—1 p-gons
# Add a p-gonto itin all possible ways

# Compute invariants like their smallest (by the
lexicographic order) boundary sequence

# Keep a list of nonisomorph representatives (we use
here the program nauty by Brendan Mc Kay)
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Enumeration of small (5, 3)-polycycles

-

)

n =2
n n n
11 6 18 11 | 1337
2|1 7 35 12 | 3524
32| 8 87 13 | 9262
4 | 4 9 | 206 || 14 | 24772
5|71 10 | 527 || 15 | 66402

Sekess
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What boundary says about its filling(s?)
- - o

# The boundary of a (p, 3)-polycycle defines it if p = 3, 4.

# A (6,3)-polycyle is of lattice type if its skeleton is a
partial subgraph of the skeleton of the partition {63}
of the plane into hexagons. Such (6, 3)-polycycles
are uniquely defined by their boundary sequence.

# From Euler formula, for any (p, 3)-polycycle, its
boundary defines uniquely the number f, of p-gons:

If p # 6, then f, = 222225 and vy, = _ 2w P; (p—4)vs.

L If p = 6, then fg Is also defined uniquely and vy = 6 + vs3. J
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Il. (p, 3)-polycycles
with given boundary



The filling problem
B

# Does there exist (p, 3)-polycycles with given boundary
seguence?

# |[f yes, is this (p, 3)-polycycle unique?

# Find an algorithm for solving those problems
computationally.

Remind, that the cases p = 3 or 4 are trivial.
Let p = 5; consider, for example, the sequence 2323232323
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2 equi-boundary (5, 3)-polycycles
B o

Boundary sequence: 12, 26 vertices of degree 2, 3, resp.
Symmetry groups: of boundary: Csy,, of polycycles: Cs.
Fillings: 20 pentagons, 12 interior points.

It Is unique ambiguous boundary with f5 <20 =4 x 5.
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2 equi-boundary (6, 3)-polycycles
B o

Boundary sequence: 40, 34 vertices of degree 2, 3, resp.
Symmetry groups: of boundary: Cs,, of polycycles: Cs.
Fillings: 24 hexagons, 12 interior points.

It Is unique ambiguous boundary with fg < 24 = 4 x 6.
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Ambiguous boundary for any p > 6

f Boundary seguence Is: T
b = u2P~14y3P=642p— 14,306
u = (23P~4)P~12;
6p—2 vertices of degree 3
and 4p°—18p+4 of degree 2.

Symmetry groups are:
of boundary: Cy,,
of polycycles: (5.

This boundary admits two isomorphic (p, 3)-fillings
(having 4p p-gons and 2p interior 3-valent vertices).
Boundaries, admitting two non-isomorphic (p, 3)-fillings,
can be obtained by adding one p-gon.
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Equi-boundary pairs of (p, 3)-polycycles

.

9o

M. Zheng (c. 2000, unpublished): the original example T
two equi-boundary (6, 3)-polycycles with 25 hexagons.

G.Brinkmann, O.Delgado-Friedrichs and U. von
Nathusius (2004): equi-boundary (p, 3)-polycycles have
the same number f, of p-gons.

So, let N,(k) be the number of such pairs with k£ p-gons.

M.Deza, M.Shtogrin and M.Dutour (2005):
proved N, (k) > 0 for & > 4p > 20, and
conjectured N, (k) = 0 for k& < 4p.

The conjecture holds for p = 5; moreover,
Ns(k) =1,3,17,> 17 for k = 20, = 21, = 22, > 23.

X.Guo, P.Hansen and M.Zheng (2002): the conjecture
holds for p = 6; moreover, Ng(k) = 1,> 1 for k = 24, > 25.
Zheng et al. found all (6, 3)-polycycles with < 20 6-gons.J
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Equi-boundary (3, 5)-fillings
- o

Two different (but isomorphic as maps) (3, 5)-fillings
of the same boundary (43445544345)>
(by 36 triangles and 30 Int. vertices).
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Equi-boundary (3, 5)-fillings
- o

Two non-isomorphic (3, 5)-fillings of the same boundary

(34345)25%(34345)%5% (by 34 triangles and 30 int. vertices).
Their symmetry is (5 as of the boundary. This boundary
Lmight be minimal for the number f3 of triangles and/or v;,,;. J
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Many equi-boundary (p, 3)-fillings

f8 (6, 3)-fillings come by two fillings of those 3 components; T
same aggregating gives arbitrarly large number for p > 6.




n + 1 equi-boundary (5, 3)-fillings
-

Theorem: the boundary 223°711223°7+32235n+19935n+3
admits exactly n + 1 different (5, 3)-fillings

(by 20n + 6 pentagons and 20n + 2 interior vertices).

Each such k£-th filling, 0 < k£ < n, Is obtained

by gluing two (elementary (5, 3)-polycycles) E; and adding
to the 4 open edges (i.e., with 2-valent end-vertices) of

FE1 + Eq, respectively, chains of &, n — k, k and n —
(elementary (5, 3)-polycycles) C;.

(223333)°
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Decomposition theorem

- .

#® Theorem: Any (R, q)-polycycle is uniquely decomposed
Into elementary (R, q)-polycycles along its bridges.

# [n other words, any (R, q)-polycycle is obtained by

gluing some elementary (R, q)-polycycles along open
edges.



Decomposition theorem

- .

#® Theorem: Any (R, q)-polycycle is uniquely decomposed
Into elementary (R, q)-polycycles along its bridges.

# [n other words, any (R, q)-polycycle is obtained by
gluing some elementary (R, q)-polycycles along open

T
3 g
N SelisSe Nos .



Possible filling
-

Let us illustrate the algorithm for the simplest case p = 5.
In some cases we can complete the patch directly.

=




Possible filling
-

Let us illustrate the algorithm for the simplest case p = 5.
In some cases we can complete the patch directly.

=




Possible filling
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But in some cases more Is needed:
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Different possible options
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Algorithm
-

A patch of p-gonal faces is a group of faces with one or
more boundaries.

Take a boundary of a patch of faces. Then:

1. Take a pair of vertices of degree 3 on the boundary and
consider all possible completions to form a p-gon.

2. Every possible case define another patch of faces.

Depending on the choice, the patch will have one or
more boundaries.

=

3. For any of those boundaries, reapply the algorithm.

This algorithm is a tree search, since we consider all
possible cases.
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An example of a search
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Another possible search
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Possible speedups
B o

# Limitation of tree size:
» Do all “automatic fillings” when there are some.

» Then, we can select the pair of consecutive vertices
of degree 3 with maximal distance between them.

# Kill some branches if :

s [, Or x are not non-negative integers (they are
computed from the boundary sequence by Euler
formula).

» two consecutive vertices of degree 3 do not admit
any extension by a p-gon.

The combination of those tricks is insufficient in many
cases. For the enumeration of the maps M, (p, q¢) below, this
IS the critical bottleneck.
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lll. maps of p-gons

with a ring of g-gons



The problem
B

fA M, (p,q) denotes a 3-valent plane graph having only
p-gonal and ¢-gonal faces, such that the g-gonal faces form
a ring, .e. a simple cycle, of length n.
Theorem: One has the equation

(4=p)g—4) +4n+ (6 —p)(z +27) = 4p

with z and z’ being the number of interior vertices in two
(p, 3)-polycycles defines by the ring of n g-gons.

M. Deza and V.P. Grishukhin, Maps of p-gons with a ring of ¢g-gons,
Bull. of Institute of Combinatorics and its Applications 34 (2002) 99-110.
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Classification theorem
fMain Theorem T

Besides the cases (p, ¢)=(7,5) and (5, g) with ¢ > 8, all such maps
are known;
If ¢ = 4, then the map IS Prism,—,; from now, let ¢ > 5.

If p = 3, two possibilities:

M5(3,6)(Dsp) M3(3,4)(Dsp)

—p. 29/



Casep =4
-

If p = 4, two possibilities:

and an |nf|n|te serle
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Casep =5

~ ® If g =5, then this is Dodecahedron -
® |If ¢ = 6, then five possibilities:

5, Ds:6,6

8, Dy4,6,6 10, D2,6,6
® |f ¢ =7, then ten possiblilities
~ » If ¢ > 8, we expect infinity of possibilities .
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All M, (

EX:-1-

4, Dy4;8,8 10, C5%,;12,10 12, C5;10,14

D

L 12, C1:13,11 12, D2;12,12 12, 54;12,12




@ Z

16, D»;14,14 16, D,;14,14

@ @

20, D»;16,16 20, (%;16,16



Casep = 6

If p = 6, then ¢ = 5. There are four possibilities:

QD

12, D5;:4,4 12, D3,,6,6

o9

12, Dgg:7,7 12, D4:6,6
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Two remaining undecided cases

hfp =7,then ¢ =5and n — (z + 2’) = 28. Two examples: T

The remaining undecided case is M, (5, q) with ¢ > 8.

# Hadjuk and Sotak found an infinity of maps M,,(7,5),

# Madaras and Sotak found infinity of maps M, (5, q) for
. ¢=10and¢=23 (mod 5), ¢ > 8. o
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Enumeration technigues

f’ Harmuth enumerated all 3-valent plane graphs with at T

o

most 84 vertices, faces of gonality 5 or 7 and such that
every faces of gonality 7 is adjacent to two faces of
gonality 7 (i.e. 7-gons are organised into disjoint simple
cycles). It gives all M,,(5,7) with n < 16.

Remaining case 17 < n < 20 is treated by following
algorithm:

Generating Adding\ring of ¢ completing (if
patches gons possible).

—p. 36/



Known M,,(

o mQ

3, D31,;9,9 4, Dy4;10,10 8, C2;10,18

B &g

9, (19,11 10, C9,;10,22 10, C9;14,18



BDRe

11, ¢1:20,14 12, C2;26,10 12, C9;14,22

IGR

- 12,5142 12, C1;21,15 13, ¢4;15,23
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16, ;30,14

14, (C9;28,12

18, ('3;33,15

18, C92;14,34



Known M,,(5,9)

6, C5;10,20 10, (%;34,8

12, ('3;39,9 J



L 12, C'1;38,10 J



Known M,,(

(0594

2, Dy,:10,10 6, Cy:12,24 6, Cgp;14,22

163

L 6, C,:13,23 6, ;14,22 6, C2,;12,24
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All parameters (p, q)

-

(p:q) n maps
(p>3,4) | p | L(Prismy)
(3,6) 2 1
(4,5) 1 1
(4,6) | 3,4 2
4,7) | 4 1
(4,8) | 2,4 2
(4,9 >8) | 4 1
(6,5) 12 4(full.)

(p:q) n maps
(5,5) 5,6 3(Dode.)
(5,6) 5,6,8, 10 5(full.)
(5,7) 4,10,12,16,20 | 10(azu.)
(5,8) > 3 > 16
(5,9) > 6 > 7
(5,10) > 2 > 2
(5,q > 10) > 9 ?

(7,5) > 28 > 2(azu.)

-



V. Generalizations



Several rings

=

fA My, .. » (p,q) denotes a 3-valent plane graph with p-gons
and ¢g-gons, where ¢g-gons form ¢ rings of length nq, ..., n;

(equiv. each ¢-gon is adjacent exactly to two ¢-gons).
Theorem: One has the equation

(4—(4—p)(4—q) an (6 —p)(x1 + x2) = 4p,, where

® 1 is the number of vertices incident to 3 p-gonal faces and

® 1> the number of vertices incident to 3 g-gonal faces.

[1 finiteness for (4, q), (5,6), (5,7) but we have infinity for
(6,5) and, possibly, for (5,q), ¢ > 8.

o -
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The case(p, q)=(5, 6) (fullerenes)
-

All maps M _(5,6) are:
# five maps with one ring of 6-gons,

=

# following three maps with two rings of 6-gons:

Dsp,; 32 C'3y; 38 Dsp; 40



Two rings of 7-gons filled by5-gons

FAOL8

Can; 44 Ds; 44 Dsg; 60

@4

Dsp; 60 D34; 68 D5 68




Two rings of 7-gons filled by5-gons

ee

Dy; 68 Dy; 68 Dy; 68

@Y

Do; 68 Cgh 76




Remaining graphsM _(5,7) (azulenoids)

[clelc)

Cay; 76

L Ds4; 100 J



The case(p, q)=(6, 5) (fullerenes)
A

» four maps with exactly one ring of 5-gons,

=

Il maps M_(6,5) are:

# the maps:

Infinite family:
t > 1 concentric

6-rings of
o special map pentagons hexa%ons o

—p. 51/

Infinite family: 4
triples of



Infinite families

-

For any ¢t > 0, there exists a map Ms
of 8-gons) and a map M,

.....

.....
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Infinite families

-

For any ¢ > 0, there exists a map Ms . 3(5,8) (with ¢ 3-rings T
of 8-gons) and a map Ms_ 2(5,10) (with ¢ 2-rings of 10-gons)

/A
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Infinite families

-
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k-valent maps

-

A MP"(p,q) denotes a k-valent map with p-gons and ¢-gons
only, where g-gons form a ring of length n.

® The only M?3(p,3) is p-gonal antiprism.
o All M2(3,4) are:

O0A4RH

Dy 10 Dsq; 12 Dy: 12 Doy 14

There is only one other A/* (3, 4); it has two rings of
L 4-gons, 14 vertices and symmetry Dy;,. J

—p. 53/



	Polycycles
	Theorem
	$(3,3)$
and $(4,3)$-polycycles
	Boundary sequences
	Enumeration of $(p,3)$-polycycles
	Enumeration of small $(5,3)$-polycycles
	What boundary says about its filling(s?)
	The filling problem
	The filling problem

	$2$ equi-boundary $(5,3)$-polycycles
	$2$ equi-boundary $(6,3)$-polycycles
	Ambiguous boundary for any $pgeq 6$
	Equi-boundary pairs of $(p,3)$-polycycles
	Equi-boundary $(3,5)$-fillings
	Equi-boundary $(3,5)$-fillings
	Many equi-boundary $(p,3)$-fillings
	$n+1$ equi-boundary $(5,3)$-fillings
	Decomposition theorem
	Decomposition theorem

	Possible filling
	Possible filling
	Possible filling

	Different possible options
	Different possible options
	Different possible options

	Algorithm
	An example of a search
	An example of a search
	An example of a search
	An example of a search
	An example of a search
	An example of a search
	An example of a search

	Another possible search
	Another possible search
	Another possible search
	Another possible search
	Another possible search
	Another possible search

	Possible speedups
	The problem
	Classification theorem
	Case $p=4$
	Case $p=5$
	All $M_n(5,7)$
	Case $p=6$
	Two remaining undecided cases
	Enumeration techniques
	Known $M_n(5,8)$
	Known $M_n(5,9)$
	Known $M_{n}(5,10)$
	All parameters $(p,q)$
	Several rings
	The case $(p,q)$=$(5,6)$
(fullerenes)
		extcolor {red}{Two} rings of $7$-gons filled by $5$-gons
		extcolor {red}{Two} rings of $7$-gons filled by $5$-gons
	Remaining graphs $M_{dots }(5,7)$
(azulenoids)
	The case $(p,q)$=	extcolor
{red}{$(6,5)$} (fullerenes)
	Infinite families
	Infinite families
	Infinite families
	Infinite families

		extcolor {red}{$k$}-valent maps

