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I. Polyhedra

and fullerenes
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Polyhedra and their faces

A polyhedron P is the convex hull of a finite set X ⊂ R3.

An i-face of P is the i-dimensional (1 ≤ i ≤ 3) set
{x ∈ P : f(x) = 0} for a linear function f ≥ 0 on P .
A 0-, 1-, 2-face is called vertex, edge, face, respectively;
their sets are V (P ), E(P ), F (P ), respectively.

(Poincaré) dual polyhedra P , P ∗ on sphere: bijection of
V (P ) with F (P ∗), F (P ) with V (P ∗) and E(P ) with E(P ∗).
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Polyhedra: their skeletons and groups

The skeleton of polyhedron P is the graph G(P )=(V,E).

Steinitz, circa 1927: a graph is the skeleton of a
polyhedron if and only if it is planar and 3-connected,
i.e. removing any two edges keep it connected.

Point group Isom(P ) ⊂ Aut(G(P )), combinatorial group
Mani, 1971: for any planar 3-connected graph Γ, there is
a polyhedron P with G(P )≃Γ and Isom(P )≃Aut(G(P )).

All finite groups of isometries of R3 are known.
In Schoenflies notations, they are: C1, Cs, Ci, Cm,
Cmv, Cmh, S2m, Dm, Dmd, Dmh, Oh, O, Td, Th, T ,
I ≃ Alt5, the rotations group of regular Dodecahedron,
and Ih ≃ I × C2 (or H3), its isometries group, called
proper and extended icosahedral group, respectively.

– p. 4/85



Definition of fullerene

A fullerene Fn is a simple (i.e., 3-valent) n-vertex
polyhedron with 12 5-gonal and (n

2
− 10) 6-gonal faces.

Fn exist for all even n ≥ 20 except n = 22.

1, 1, 1, 2, 5 . . . , 1812, . . . 214127713, . . . isomers Fn, for n =
20, 24, 26, 28, 30 . . . , 60, . . . , 200, . . . .

Thurston,1998, implies: number of Fn grows as n9.

IP, i.e. with isolated pentagones, Fn are denoted by Cn.

C60(Ih), C80(Ih) are only icosahedral (i.e., with highest
symmetry Ih or I) fullerenes with n ≤ 80 vertices.
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What nature wants?

Fullerenes or their duals are ubiquitous esp. in nanoworld:

Biology: virus capsids and clathrine coated vesicles,

Organic (i.e., carbon) Chemistry, even Architecture,

also: (energy) minimizers in Thomson problem (for n
unit charged particles on sphere) and Skyrme problem
(for given baryonic number of nucleons);
maximizers, in Tammes problem, of minimum distance
between n points on sphere.

Which, among simple polyhedra with given number of
faces, are the “best” approximation of sphere?

Conjecture: FULLERENES

– p. 6/85



Isoperimetric problem for polyhedra

Lhuilier 1782, Steiner 1842, Lindelöf 1869, Steinitz 1927,
Goldberg 1933, Fejes Tóth 1948, Pólya 1954

For a polyhedron P with m faces, maximizing its volume
V for given surface S is equivalent to minimizing V if P
is circumscribed around the unit sphere.

Schwarz,1890: for IQ (Isoperimetric Quotient) of a solid,
it holds IQ = 36π V 2

S3 ≤ 1 (with equality only for sphere).

Goldberg, 1933, conjectured: polyhedra with m ≥ 12
faces having maximal IQ are fullerenes. For m ≤ 12
(i.e., 4, . . . , 10 and 12), it is duals of 8 convex deltahedra.

In Biology: ratio V
S

(= r
3

for spherical animal of radius r)
affects heat gain/loss, nutritient/gas transport into body
cells and organism support on its legs.
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II. Icosahedral

fullerenes

and their duals
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Icosahedral fullerenes
Call icosahedral any fullerene with symmetry Ih or I.

n=20T for T=a2+ab+b2 (triangulation number), 0≤b≤a.

I for 0 < b < a and Ih for a = b 6= 0 or b = 0.

Dodecahedron F20(Ih): smallest ((a, b)=(1, 0), T=1) and
unique non-IP (with adjacent 5-gons) icosahedral one.

C60(Ih)=(1, 1)-dodecahedron
truncated icosahedron

C80(Ih)=(2, 0)-dodecahedron
chamfered dodecahedron
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Small examples

Besides F20(Ih) with T = 1, the next smallest examples are:

C60(Ih): (1, 1)-
dodecahedron,

T=3

C80(Ih): (2, 0)-
dodecahedron,

T=4

C140(I): (2, 1)-
dodecahedron,

T=7 (laevo)
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Icosadeltahedra

Icosadeltahedron C∗
20T : dual of an icosahedral fullerene.

Geodesic domes: Fuller, patent 1954

Capsids of viruses: Caspar and Klug, Nobel prize 1982

Carbon C60(Ih): Kroto-Curl-Smalley, Nobel prize 1996
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Small icosadeltahedra witha=2

C∗
80(Ih), (a, b)=(2, 0) C∗

140(I), (a, b)=(2, 1)

(a, b) (or (h, k) as Caspar-Klug) are the numbers of steps, in
2 directions, on the shortest way in the graph of C∗

n between
two closest 5-valent vertices. Their distance a + b is Fullers’s
frequency, while T = a2 + ab + b2 is triangulation number.

In general, T not define (a, b) but T=a2, 3a2 imply (a, 0), (a, a).
Caspar-Klug: classes P=1, P=3; Fuller: Alternate, Triacon.
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Goldberg-Coxeter construction

Given (a, b) ((5, 2) below), put latiice triangle on p6 net {36}.
Gluing pieces coherantly gives other triangulation of plane.
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Icosadeltahedra withT = a2

(7, 0) (5, 0)

(4, 0), herpes
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Cowpea mosaic virus CPCM:T = 3

Plant comovirus infecting cowpea leafs; high yields 1-2 g/kg
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Icosadeltahedra in Architecture

(a, b) Fullerene Geodesic dome

(1, 0) F ∗

20
(Ih) One of Salvador Dali houses

(1, 1) C∗

60
(Ih) Artic Institute, Baffin Island

(3, 0) C∗

180
(Ih) Bachelor officers quarters, US Air Force, Korea

(2, 2) C∗

240
(Ih) U.S.S. Leyte

(4, 0) C∗

320
(Ih) Geodesic Sphere, Mt Washington, New Hampshire

(5, 0) C∗

500
(Ih) US pavilion, Kabul Afghanistan

(6, 0) C∗

720
(Ih) Radome, Artic dEW

(8, 8) C∗

3840
(Ih) Lawrence, Long Island

(16, 0) C∗

5120
(Ih) US pavilion, Expo 67, Montreal

(18, 0) C∗

6480
(Ih) Géode du Musée des Sciences, La Villete, Paris

(18, 0) C∗

6480
(Ih) Union Tank Car, Baton Rouge, Louisiana

b = 0 Alternate, b = a Triacon and a + b Frequency (distance
of two 5-valent neighbors) are Buckminster Fullers’s terms.
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Geodesic Domes

US pavilion, World Expo
1967, Montreal

Spaceship Earth, Disney
World’s Epcot, Florida

In fact, the same structure of icosadeltahedron is adopted
in the architecture of (virion capsid of) viruses.
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III. Generalities

on viruses
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Life fractions
life: DNA and RNA (cells)

1/2-life: DNA or RNA (cell parasites: viruses)

? Subviral: satellite viruses, no protein RNA (viroids) or
DNA: plasmids (extra-chromosomal replicable DNA),
nanobiotech, and “junk” (i.e., non-coding) DNA.

?? Subviral (no DNA/RNA) self-replicating protein: prion

Atom DNA Cryo-EM Prion Virus capsides

size 0.2-0.3 ≃ 2 ≃ 5 11 20 − 50 − 100 − 400

nm SV40, HIV, Mimi

Virus: from Latin poison. It has 2 stages: free (dormant
transmissible particulate virion released by infected cell)
and, if lucky, intracellular, active infectious stage. Bottle
in ocean (extracellurar space), then packet of bad news.
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Viruses in numbers

≈ 2, 000 virus species (but ≈ 30, 000 strains) are known.

Diameter: 18 nm (Porcine circovirus PCV2) - 600 nm
(Mimivirus). Length of helical ones: up to 3, 000 nm.

One cm3 in some ecosystems contains 108-1010 viruses.
HIV-infected person releases > 1010 viruses daily.

In water, phages float free and are most of the biomass:
≃ 1

4
Gt=2.5×108 tons (4×1030 viruses at 0.2 fg of carbon

and 100 nm each). Cf. human biomass: ≃ 0.4 gigaton.

Biomass of virosphere exceeds those of all eukaryotes.

Estimated global population: ≈ 1031 individuals of ≈ 100
million types. If stacked end to end, they would span the
distance 1013 AU (Earth-Sun), i.e. 160 million light years.
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Global primary biosphere 1997-2000
SeaWiFS Project, NASA, sattelite-estimated terrestrial
vegetation and sea-surface chlorophyll indicating their
primary production (photosynthesis of organic compounds
from atmospheric/aquatic CO2): 56.4 and 48.5 Gt C yearly.
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Viruses in numbers: genome
About 1000 viral genomes are sequenced by now.

The range of their genome size (DNA/RNA content)
is 3.2 kb DNA (3.5 kb RNA) - 1.1814 Mb (Mimivirus).
Also, 3-911 protein-coding genes and 4-200 proteins.
Min. genome: ≃ 300 genes for 35-40 proteins. LUCA?

Cf. human (3.3 Gb, ≈ 20, 500 genes) and highest: 670 Gb
(Amoeba Dubia), 98000 genes (Trichomonas Vaginalis).

By far most (esp. plant) viruses have RNA. All archea
viruses and most (bacteria)phages have DNA. Most
DNA (RNA) viruses replicate in nucleus (cytoplasm).

80% of viral genes not appear in another virus or a cell,
their function is unknown. Esp. diverse (in morphology,
DNA, proteins) are archeal ones: no homologs for 90%
of genes of viruses isolated from boiling acid water.
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Mimivirus and smallest non-viruses

Largest capsid: 400 nm, 1

30
of its host amoeba, record is 1

10
.

Largest genome: ≈ 1.2 Mb and 911 protein-coding genes.
Cf. minimal free-living (bacterium Mycoplasma genitalium):
150 nm, 0.583 Mb, 521 genes. Conj. minimum: 256 genes.

Smallest endosymbionts are: eukaryot Guillardia θ 0.55 Mb,
Nanoarchaeum equitans 0.49 Mb and the record: bacterium
Carsonella ruddii with genome 0.16 Mb and 182 genes.
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Mimivirus as infected girus

Mimivirus is conjectured to be icosahedral, T ≈ 1180.

2008: Mamavirus, even larger strain of Mimivirus, has a
parasite ( 1

100
of its host) - first virophage (harmful

satellite virus) Sputnik. It is also icosahedral.
3 of its 21 genes are from Mimivirus; is it agent of lateral
gene transfer between giant viruses?
1 gene is a protein homologue of an archaeal virus;
others 17, of bacteriophages and eukaryotic viruses.

Other virophages are expected on giant viruses.

Giruses (giant viruses) are viruses with size ≥ 250 nm
and ≥ 300 genes. They have DNA and form large part
of DNA virus population in marine environments.
Are they ex-free-living as obligate parasitic/symbiotic
bacteria, while small viruses are cell products?
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Example: HIV-1 dynamics in vivo
Viral genome load per ml of plasma is measured for
virion RNA and viral DNA: pre-integrative, proviral
(integrated into host cell DNA) and expressed one.

Provirus infection is latent (replicated along with host’s
genome) or productive (transcribed into messenger
RNA producing new virions infecting other cells).

Mean life-span of cell-free virus, virus-producing and
latently infected cells is 8 h, 16 − 48 h, 4.6 − 44 months.

≈140 viral replication cycles (from virion release till its
"progeny") occur yearly. HIV-1 genome size is 104 bp;
its mutation rate is 3.4×10−5 per bp per replication cycle.
So, mutations occur often at each genome position daily

Average infected person releases > 1010 virions daily;
most by productively infected CD4+ T lymphocytes. No
treatment give <106: latent reservoir in drug-free tissues
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Viral quasispecies: multilevel selection
RNA virus genome has (3 − 30) × 103 nucleotid bits and
high mutation rate 10−3 − 10−5 substitutions per bit, i.e.,
≥ 1 per replication cycle. Newly arising mutants form a
quasispecies, i.e., a swarm, cloud of related genomes.
Eigen-Shuster, 1977, introduced it to model biogenesis.

Instead of single genotype fitness, here selection acts
on their swarm: its genotypes tend to same fitness, to
adapt better to changes (as sex preserves diversity).
Are they also complementary, to colonize more niches?

Diversity (genome divergence rate) of RNA viruses as
HIV reach 15% per year in long-term survivors, or 5.5
mutations per essential genome (for proteins whose
failure is deadly) per genomic replication cycle. “Speed
limit” (evolutionary error threshold): 6 such mutations.
Pleiotropy → complex organisms are 1000 times slower
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Virus evolution

There is more genetic diversity among viruses (since
their genome duplicated in short time) than in all the
rest of the Animal, Plant and Bacterial kingdoms, all of
whose genomes consist of double-stranded DNA.

Main mechanisms of viral genome change are:
antigenic drift: small, gradual change by accumulating
random point mutations of individual nucleotides, and
antigenic shift: major genome change by recombination
(join of broken DNA strand to the end of other molecule
DNA) or reassortment (called "viral sex"): similar RNA
viruses with segmented (into up to 12 parts in capsid)
genomes can produce offspring by shuffling of genes.

Antigenic drift can lead to resistance to antiviral drugs.
Antigenic shift leads usually to a pandemic.
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IV. Impact of viruses

– p. 28/85



Virus-host coevolution
Myxoma was introduced to Australia in 1950 against
rabbit plague. Virus was 99.8% lethal, in 6-10 days.

But from 1953 it kill in 3-4 weeks, so that sick rabbits
could be mosquito-bitten 3-5 times more. Now, after 7
epizootics, lethality during epidemics fell below 50%
(attenuation of the virus and inherited immunity).

Group selection for transmissibility let emerge/dominate
strains of lowered virulence. Tick-transmitted viruses
outcompete them but ticks bite also dead rabbits.

Virus strains compete for resources, i.e., the host.
There is a trade-off between strain traits: transmission
rate, duration of infectiousness and case mortality.

Problemes: Are viruses evolve toward benignity (not
eradicate their hosts)? What is virulence: rate of virus
replication (transmission) or host death rate (time to it)?
What is virus-host mutual impact on genetic diversity? – p. 29/85



Influenza A quasispecies
Main example of quasispecies created by reassortment:
swarms of related influenza viruses genomes. They
consist of 8 RNA segments acting as “chromosomes”,
and each flu virus assembly requires one copy of each.
Reassortment between an avian and a human virus
caused H2N2, 1957, and H3N2, 1968, pandemic flu.
Antigenic drift in gene H caused 1962, 1964 epidemics.

Worst influenza virus is A (from wild aquatic birds) since
it infects all mammals; B, C infect humans but milder.
Its human pandemics/serotypes (antibody responses):
known flu pandemics 1580, 1729, 1781, 1830, 1847;
H2N2? "Russian flu" 1889-90: 1 million died;
H1N1 "Spanish flu" 1918-20: 50 million;
H2N2 "Asian flu" 1957-58: 1.5-2 million;
H3N2 "Hong Kong flu" 1968-69: 700, 000;
H5N1 Hong Kong ≥ 1997: fatality 50% but slow spread;
H1N2: seasonal flu endemic in humans, pigs; H7N7. – p. 30/85



Swine flu H1N1 2009-2010 pandemic
It started in February due large pig farms, 8.5 km to the
north of the village La Gloria in Mexico’s state Veracruz.

This virus is unusually mongrelised (of mixed ancestry):
possible reassortment of two (American and Eurasian)
swine influenza virus strains. Six genes from American
swine flu are mixtures of swine, bird and human flu.

It kills esp. not elderly/children but people aged 25-50,
producing a cytokine storm, immune (over)-reaction:
release of too much cytokines (cell-signaling molecules)
and then leikocytes into the lung tissue.

≈ 6 times as many as normal (>1

3
of population) are

expected to get this flu. Safe vaccine exists and appear
to work after just one dose, even in children under 10.

From November 2009 swine flu become predominant flu
strain worldwide. Aboriginals in Australia are esp. hit.
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Swine flu H1N1 2009-2010 pandemic

Swine flu HIV

Infection is deep in lungs (as killer H5N1), not in throat.
Signs of severe form: shortness of breath, chest pain,
blue lips. Only treatment: oseltamivir (Tamiflu).

Most fatal cases: co-infection with bacteria and asthma,
obesity. Biggest danger: reassortement with H5N1.

In Europe, this flu come earlier than usual one, met
rhinovirus (cold) and is slowed, perhaps, by interference
with it and cross-immunity with seasonal endemic H1N1
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Flu and common cold

Flu proteins are antigens M1, NP used to determine type
(A, B or C) and HA, NA used to determine the particular
sub-type (strain) of influenza A. The capsid is helical.
Liddington et al., 2009, found human monoclonal antibodies
inhibiting cell entry for many flu A viruses, including H5N1.
Cold (human rhinovirus, species A or B) is also RNA but its
capsid is icosahedral (T=3) with 3 proteins on its surface.
Ligget et al., 2009, found genetic codes for all 189 known
strains and organized them into 15 sub-groups coming from
distant ancestors. It explains cold uncurability at present. – p. 33/85



Viruses versus cancer and stem cells
Main human oncoviruses (i.e., inserting or enhancing
oncogenic genes in the host DNA): Hepatitis B and C,
Herpes 4 (Epstein-Barr) and 8 (Kaposi’s sarcoma),
Papilloma (HPV), T-cell leukaemia (HTLV-1).

Oncolytic viruses kill (only or preferentially) cancer cells.
A natural picornavirus Seneca Valley Virus-001 infects
only cancer cells in small cell lung cancer.
Tumor suppressing protein p53 mutates in 1

2
of cancers.

Genetically modified adenoviruses Onyx 015 and H101,
using that, infect mainly p53 mutant (so, cancer) cells.
Such virotherapy is permitted in China from 2005 in
head and neck cancer. Added to chemotherapy, H101
injected in a tumor, doubled short-time response rates.

Fueyo et al,2007, did virus killing brain tumor stem cells

Retro-, lenti- and adenoviruses are used in research
reprogramming of adult cells into pluripotent stem cells. – p. 34/85



Statistics of EIDs in 1940-2004
Jones et al., in NATURE, 21-2-2008: distribution of all 335
events of origin of EIDs (emerging infectious diseases).
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Impact of viruses as pathogenes

Smallpox (major and minor variola viruses) imported by
Spanish, killed ≈ 70% of Native Americans.
"Spanish flu" 1918 (variation of influenza A virus H1N1)
killed 3-5% of world population; case fatality ratio: 2-20%.
More than 25 million have died of HIV/AIDS from 1981.
HIV, Ebola, Marburg, SARS, Avian flu are yet uncurable

Make war: only <10 virus species are wiped out by now
Only vaccine-eradicated disease: smallpox, from 1980

Make love: sexual reproduction is not effective in cost,
risk and speed. But it is the main antihazard defense of
the multicellulars: arising mutations disrupt virus work.

Shackelton and Holmes, 2008: variations of the genetic
code (codon reassignments in mitochondria, ciliates,
yeasts, etc.) were selected as an antiviral defense.
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Impact of "domesticated" viruses
Provirus: one latent in host cell DNA; it multiplies only
when cell divides, or environment suitably changes.
Some: domesticated (loose many genes but remainder
become permanent functional addition to host DNA).
10− 20% of of bacterial DNA is prophage. In eukaryotes,
such DNA come from retroviruses, i.e., RNA viruses
which, infecting a cell, convert their RNA in DNA.

≥ 8% of human genome are proven ERV (endogeneous
ex-retroviruses) derived from ancient infections of germ
cells. Next 40%: DNA imported horizontally by viruses
as mammalian placenta and human immune system.
35 of vital human genes are of viral origin.
In Nov. 2006, Phoenix, 5 Mya old ERV, was resurrected.

Not family trees (vertical descent), but horizontal gene
transfer by viruses acquiring genes from their hosts and
esp. recombining in co-infected cells, shaped early life.
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Impact of viruses on evolution
Nakahara and Sagawa, 1968: virus theory of evolution
(it was caused by viruses manipulating genetic code via
transportation and mixing genes across species).

Bell, 2001: viral eukaryogenesis hypothesis, that
nucleus of eukaryotic cell evolved from endosymbiosis
event: a girus (giant virus) took control of a micoplasma
(i.e. without wall) archeal or bacterial cell but, instead of
replicating and destroying it, became its ”nucleus”.

Forterre et al., 2006: viruses evolved in "RNA world"
(when RNA-organisms could produce proteins) and
caused main events (DNA, cell nucleus) in early life.
They combined pairs of ss RNA in ds DNA; then three
takeovers of RNA chromosomes by more stable viral
DNA, created 3 domains of cellular DNA-replicating life.

Béjà, 2009: cyanophage infect cyanobacteria algae and
upgrade cell’s photosystem to keep it alive; ≈5% world’s
oxigen result (cell takes electrons from more proteins). – p. 38/85



Viruses: big picture
Viruses are dominant (most abundant/diverse) Earth
genetically reproducing entities. They are associated
with all forms of life and kinds of environment.

Are viruses only mobile genetic elements or they form
4-th domain (Acytota, i.e., without cells) of life? They
react on their environment (but not on stimuli), have no
homeostasis, mutate and reproduce spontaneously (by
self-assembly as crystals, not cell division) inside a cell.

Small viruses could evolve from plasmides (transferable
pieces of DNA) as viroid→ satellite→ virus;
larger ones, from cells-parasitizing cells.

Virus-like entity could mediate Earth transition to a
biotic world. But Jalasvuori et al., 2008: they almost not
survive sporification and their diversity (>1 ancestral
strain) points to local, not panspermic origin of life.
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V. Symmetry of

virus capsids
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Symmetry of viruses
Capsid of virion: protein shell enclosing genome. Some
produce lipid (fat) envelope from membrane of host cell
They exit cell by budding (continued release), not killing.

Virus structure hints on where it initiate infection and on
its epitopes (sites where antibodies can recognize it).
It is studied by EM (electron microscopy) (showing
virus-cell interaction at low and virus surface at high
magnification) and cryo-EM (computer analysis of
positions of x-rays diffracted by crystallized virus).

Main virus morphologies: helical (linear), icosahedral,
complex and naked or enveloped (for them shapes are
of the core). Archeal viruses can be also lemon (with
tails on both ends), droplet and bottle shaped.

Icosahedral one is also called isometric, polyhedral, of
spherical shape, of cubic or rotational 2-3-5 symmetry.
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Symmetry of viruses
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Helical viruses

Tobacco mosaic virus Enveloped helical virus

Helical viruses are defined by their amlitude (diameter)
and pitch (the distance covered by each complete turn
of the helix). Longer ones are flexible: curved or bent.

Until 1960, only known helical viruses were of plants.
All helical animal viruses, known by now, have RNA.

– p. 43/85



Complex structure: poxviruses

Their large (visible in OM) capsids are brick-shaped or oval.

Orthopoxvirus Avian poxvirus
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Crick and Watson had a dream
Crick and Watson’s article in Nature, 10-3-1956, starts:
"It is a striking fact that almost all small viruses are
either rods or spheres." They suggested 3 Platonic
groups. But Hodkin, 1949: small spherical viruses could
be built up of subunits related by cubic symmetry.

In fact, all virions, except complex ones (as poxviruses,
tailed phages and β-like viruses) are helical or (≈ 1

2
of

all, most animal and almost all human) icosahedral.

Icosahedral viruses are defined by their six 5-, ten 3-,
15 2-fold axes of symmetry at vertices, faces, edges.

For weaker icosahedrality, see pseudo-equivalence and
Twarock, 2004, Janner, 2006, Chen et al., 2007 below.
For non-icosahedral fullerene forms, see retroviruses
HIV, RSV and prolate shape of complex phages below.
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VI. Icosahedral

viruses

– p. 46/85



Icosahedral viruses
Protomer: each protein subunit (1 or more polypeptide
chains) in a capsid. Capsomers: polygonal rings of n
protomers (n=5, 6, 3, 2) of diameter ≤ 4 nm joined by
bonds (protein/protein interaction) to form virus shell.

Bonds are flexible: ≃ 50 deviation from mean direction.
Self-assembly: slight but regular changes in bonding.
Its disruption gives non-infectious structures. Dengue
virus (T=3) creates 1 viable particle in each 4, 000 tries.

Caspar-Klug principle: virion minimizes free energy by
organizing capsomers quasi-equivalently:
icosahedral symmetry but with more than 60 (maximum
if protomers have identic environment) subunits.

But origin, energy, termodynamics and kinetics of this
self-assembly is unclear. Modern computers cannot
evaluate capsid free energy by all-atom simulations.

– p. 47/85



Goldberg-Coxeter construction
Given (a, b) ((5, 2) below), put latiice triangle on p6 net {36}
and replace its 6-valent vertices by pentamers.
Gluing pieces coherantly gives other triangulation of plane.
Fold then 20 identic Icosahedron faces into quasi-equivalent
Icosahedron, i.e., icosideltahedron.
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Capsomer arrangement

It is given, on virion surface, by the triangulation number
T=a2+ab+b2 of capsid icosadeltahedron C∗

20T .
Capsid has 60T protomers but EM resolves only some
capsomers: around vertices (12 pentamers and 10T -10
hexamers), on 20T triangular facets (trimers of three
protomers, 1 in each corner), or on 30T edges (dimers).
Some mutations produce 60T monomers, no clustering.

Following viruses with T=3 have their 60×3 protomers
clustered as: 12 pentamers plus (10×3)-10 hexamers
(Turnip Yellow Mosaic virus); 20×3 timers (Poliovirus),
and 30×3 dimers (Turnip Crinkle Virus).

Clustering maximizes interactions; so, stabilizes virion.
Capsomers bonds are weaker than between protomers.
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Quasi-equivalent bonding
So, in contrast to crystal lattice, capsomers can now be
quasi-equivalent, i.e. similar (on the same face of
Icosahedron), but not symmetry equivalent.
Quasi-equivalent icosahedron means icosideltahedron.

Triangulation number T=a2+ab+b2 is the number of
locations with non-equvalent bonding;
each face of Icosahedron correspond to T small
triangles (subunit in each corner; so, 60T protomers).
Those icosahedral asymmetric units are related by
quasi-equivalent symmetry axes, i.e. symmetry
elements holding only locally.

General quasi-equivalence: any small non-random
variation in a regular bonding pattern leading to a more
stable structure than strictly equivalent bonding.
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“Most diseases come from icosahedra”
Hippocrates, circa 400 BC: disease is icosahedra (water)
excess in the body.
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Capsids of icosahedral viruses

(a, b) T = a2 + ab + b2 Fullerene Examples of viruses

(1, 0) 1 F ∗

20
(Ih) B19 parvovirus, cowpea mosaic virus

(1, 1) 3 C∗

60
(Ih) picornavirus, turnip yellow mosaic virus

(2, 0) 4 C∗

80
(Ih) human hepatitis B, Semliki Forest virus

(2, 1) 7l C∗

140
(I)laevo HK97, rabbit papilloma virus, Λ-like viruses

(1, 2) 7d C∗

140
(I)dextro polyoma (human wart) virus, SV40

(3, 1) 13l C∗

260
(I)laevo rotavirus

(1, 3) 13d C∗

260
(I)dextro infectious bursal disease virus

(4, 0) 16 C∗

320
(Ih) herpes virus, varicella

(5, 0) 25 C∗

500
(Ih) adenovirus, phage PRD1

(3, 3) 27 C∗

540
(Ih) pseudomonas phage φKZ

(6, 0) 36 C∗

720
(Ih) infectious canine hepatitis virus, HTLV1

(7, 7) 147 C∗

2940
(Ih) Chilo iridescent iridovirus (outer shell)

(7, 8) 169d C∗

3380
(I)dextro Algal chlorella virus PBCV1 (outer shell)

(7, 10) 219 C∗

4380
(I)dextro? Algal virus PpV01
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Examples

Satellite STMV, T=1, of TMV,
helical Tobacco Mosaic virus
1st found (Ivanovski, 1892,

and Beijerinck, 1899),
1st seen (Stanley, 1931) EM

Foot-and-Mouth virus,
T = 3
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Pseudo-equivalence
Pseudo-equivalence is reduced quasi-equivalence, arising
if 60T protomers are not chemically (by sequence) identical.
Poliovirus and BPMV comovirus both have T = 3. Their
subunits (trapezoids) are proteins VP1, VP2,VP3 and S, L.
In Polio, around 5-fold, 5 VP1 (quasi-equiv.), but around
3-fold (triangle centers), 2 ways; so, pseudo 3-fold axes.

Poliovirus Polio and BPMV viruses
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Viruses with T = 4

Human hepatitis B Semliki Forest virus

But all known viruses with T > 7 have more than one core
capsid protein (subunit type) and so, pseudo-equivalent.

– p. 55/85



More T = a2 viruses

Sindbis virus,
T = 4

Herpes virus,
T = 16
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72 pentamers puzzle: 2 papilloma viruses

Human polyoma, T=7d? Simian virus SV 40, T=7d?
They violate quasi-equivalence: there are 72 capsomers
(so, 72=12+10(T -1) imply T=7) but all (instead of only 12) are
5-mers (so, 360 subunits implying T=6, since Caspar-Klug
tiling is by 20T regular triangles, 1 subunit in each corner).
Twarock, 2004, solved it proposing instead Penrose-like
tilings of Icosahedron by rhombus and kite.
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Twarock’s model of protein interactions
Trimer and dimer seen as golden kite and thick rhombus.
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72 pentamers puzzle: Twarock solution

The locations of (12) 5-, (30) 2- and (20) 3-fold symmetry
axes visualize the action of the icosahedral group H3=Ih.

Tiles are rhombs and kites. All corners of the tiles meeting
at 5-valent vertices mark the locations of protein subunits,
i.e., exactly at tile corners subtending the same angle 72◦.
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Quasi-crystal from D6

Checkerboard root lattice Dn= {x ∈ Zn:
∑n

i=1
xi is even}.

Let {ei} be the unit vectors of R6 and {ai} be the roots:
a1=e2-e1; a2=e1-e3; a3=e3-e6; a4=e5+e6; a5=-e4-e5; a6=e4-e5

Map {ei} on vectors pointing to 6 non-aligned vertices of
Icosahedron: e1→

1

2
(1, 0, τ); e2→

1

2
(τ, 1, 0); e3→

1

2
(0, τ, 1);

e4→
1

2
(−1, 0, τ); e5→

1

2
(0,−τ, 1); e6→

1

2
(τ,−1, 0). τ=1+

√
5

2
.

D6 is Z-linear combination of ai, 1 ≤ i ≤ 6; its projection
in R3 is (Z[τ ]={a + τb : a, b ∈ Z})-linear combination of
a′1=1

2
(τ − 1, 1,−τ), a′2=1

2
(1,−τ, 1 − τ), a′3=1

2
(−1, τ, 1 − τ).

Vertices α of Icosidodecahedron (24 even permutations
of 1

2
(±1,±τ,±(1 − τ)) and 8 permutations of (±1, 0, 0))

encode the generators of H3 as reflections (in the plane

orthogonal to the vector α) rα : x→x − 2〈x,α〉
〈α,α〉 for x ∈ R3.
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Twarock tilings
Their vertex-sets are on nested shells in Sm, the set of all
N-linear combinations of, up to m ≤ 32 vectors (vertices) α.
In S3, it occurs Triacontahedron, a decorated Icosahedron.

Penrose tilings of R2, R3, R4 have symmetry types
H2, H3, H4, respectively. Those tilings can be realized
as irrational slices of root lattices E6 or E8.

Coxeter groups H2=I2(5), H3=Ih and H4 of orders 2! · 5,
3! · 20 and 4! · 600 are symmetry groups of 2-dim. 5-gon,
3-dim. 20-faced Icosahedron and 4-dim. 600-cell.
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Digression: noncrystallographic groups
A finite Coxeter group (not product of smaller ones) is
noncrystallographic (not stabilizes a lattice) if and only if
it is H4, H3 or I2(p) with p 6= 2, 3, 4, 6.

Which their higher-dim. (so, reducible) representations
can be viewed as the point group of a lattice?

I2(p) is crystallographic in Rn iff n ≥ ϕ(p), where ϕ(p) is
the Euler’s totient function |{1 ≤ i ≤ p} : gcd(i, p) = 1|.
It is equal to 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4 for 2 ≤ p ≤ 12.

H3 is crystallographic in Rn if and only if n ≥ 6.
All H3-symmetric lattices in R6 are: simle cubic Z6,
its half, face-centered cubic D6, and body-centered
cubic {x ∈ Z6 : xi ≡ xj(mod 2) for all 1 ≤ i, j ≤ 6}.

Embedding of noncrystallographic Coxeter groups into
crystallographic ones: H2 → A4, H3 → D6, H4 → E8.
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Three most recent theories
Reidun Twarock, 2004 (German/British mathematician):
got icosahedral tilings by projection from the lattice D6.
Other way, by local rules, was in Berger-Shor, 1994.

Aloysio Janner, 2006-2007 (Dutch crystallographer):
construct icosahedral polyhedra in the icosahedral
lattice generated by 6 non-aligned (and suitably scaled)
vectors to vertices of Icosahedron from its center.
It generalizes Caspar-Klug and Twarock tilings of Ico.

Chen-Zhang-Glotzer, 2007 (US): molecular Monte
Carlo simulation of the self-assembly of cone-shaped
particles minimizing free energy subject to convexity
constraint. Caspar-Klug and Twarock tilings come out
for N = 12, 32, 72, 132, i.e. N−2

10
= T = 1, 3, 7, 13.

Bruinsma-Gelbart-Requera-Rudnick-Zandi, 2003 (US)
got N = 12, 32, 42, 72 supposing, moreover, sphericity.
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Icosahedral latticeIL
It is {

∑6

i=1
niai : ni ∈ Z} (a projection of Z6 into R3), where

{ai} (projections of {ei ∈ Z6}) are vectors from Icosahedron
center to its 6 non-aligned vertices, i.e., on 5-fold axes.
The vectors a1, . . . , a6 are linearly independent over Q; so,
the coordinates n1(x), . . . , n6(x) are unique for any x ∈ IL.

For some number a0, it holds: a1=a0(e1+τe3),a2=a0(e2+τe1),
a3=a0(e3+τe2), a4=a0(−e1+τe3),a5=a0(e3-τe2),a6=a0(−e2+τe1)

where {e1, e2, e3} is the orthonormal R3-basis and τ=1+
√

5

2
.

The icosahedral group I≃A5 is the group of proper rotations
of Icosahedron, generated by 5- and 3-fold rotations R5, R3

(around a1, a1+a2+a3) with R5
5=R3

3=(R5R3)
2=1.

2-fold rotation around e3 is given by R2
5R3R

−1
5

.

Janner’s general conjecture: capsid acts as resonator with
nodes of wave-like eigenmodes at various IL lattice points.
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Janner’s model of rhinovirus
Cold (human rhinovirus) form largest (≈ 100 serotypes)
genus of Picornaviruses having icosahedral (T=3) capsid.
Caspar-Klug’s model, C∗

60, explains 3 proteins on its surface
but not V P4 at interface between capsid and RNA cavity.
X-ray diffraction gave structure of serotypes 16,14,3,2,1A.

Janner, 2006: slight deviation, affine C∗
60, has vertices in IL:

12 5-valent (of Icosahedron) with even and 20 6-valent ones
(of 1

τ2 -rescaled Dodecahedron) with odd values (n1, . . . , n6).

This radial scaling is given by matrices 1

τ2 I3 and 1

2
(4I6 − J6),

in terms of basises {e1, e2, e3} and {a1, . . . , a6}, respectively.

Capsid is encapsulated between 2 such polyhedra: internal,
1

τ
smaller, delimites core. Moreover, layers of each protein

lie on polyhedra in IL with symmetry of subgroups of I.
Value a0 is ≈ 9 nm but it depends on serotype and proteins.
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Janner’s general model
Janner, 2007: icosahedral capside surface, delimited by
external and internal form, can be characterized as icos.
cluster of 2 polyhedra in 3D Z-module, generated from a
single point in Z6. See below point orbits by the action of
Ih × C4: τ2-scaled icosahedra, τ3-scaled dodecahedra,
τ -scaled dodecahedra and τ -scaled icosidodecahedra.
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Virus dynamics and group representation
If capsid A has symmetry G ∈ {Ih, I} with triangulation
number T , then A has n=60T protein units (protomers).

Peeters-Taormina, 2008, compute vibration spectrum of
A approximating protomers as n point spring-masses.

An non-linear n-atoms molecule has 3n − 6 degrees of
vibrational freedom: 3n for translational motion minus 3
translations and 3 rotations of the molecule as a whole.

(Reducible) displacement representation of G (and A)
consists of |G| 3n×3n matrices Dg=Pg⊗Rg, g ∈ G where
Pg are permutation n×n matrices and Rg are rotation
3×3 matrices forming an irreducible representation of G.

Using decomposition of Dg in block diagonal form, they
obtain, for example, for Rice Yellow Mottle Virus having
T=3: 54 Raman active modes (including 45 degenerated
5-fold) and 25 degenerated 3-fold infrared active modes.
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Viruses with T = 13 laevo, i.e.,(3, 1)

Rice dwarf virus Bluetongue virus

Rhesus rotavirus have multiple layers with 13 laevo and
different organization of 13×60 subunits into capsomers.

Bursal dicease virus is an example of ones with 13 dextro.
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Viruses with T = 25

Smallest viruses observed directly (by EM) have T = 25.

PRD1 virus Adenovirus (with its spikes)
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More Ih-viruses

Pseudomonas phage phiKZ,
T = 27

HTLV1 virus,
T = 36
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Large icosahedral viruses

Archeal virus STIV, (5, 1)
Algal chlorella virus PBCV1
(4th: ≃ 331.000 bp), (13, 0)

Sericesthis and Tipula iridescent viruses: (12, 1), (7, 7)?

Phytoplankton virus PpV01: T=219, largest known T .

Mimivirus (largest known virus): 1078 ≤ T ≤ 1371; 1179?
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Sericesthis irridescent virus (SIV)
Prolonged storage of SIV in distilled water at 4◦C led to the
disintegration of virions into 3-, 5- and 2-gonal fragments
consisting of 55, 16, and 9 subunits respectively. So, model
(Wrigley, 1969) below gives (20×55)+(12×16)+(30×9)=
1562 subunits, i.e. icosahedrality with T=156=102+(10×4)+42

(still, values 1472 or 1292 subunits are not excluded).
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VII. Other shapes
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HIV conic fullerene; which Fn(G) it is?

Capsid core
(7, 5) Icosahedral shape (spikes): T ≃ 71?
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Fullerene quasi-equivalence variations
Mellema et al., 1979: Alfalfa Mosaic Virus ALMV is cylindric
nanotube of hexagons with two icosahedral (T = 1) caps.
Ganser et al., 1999: HIV capsids are conic (5, 7)-fullerenes
mainly (but still not visualized at high resolution EM).
Butan et al., 2007: other retrovirus (DNA-replicating RNA),
avian Rous sarcoma, is in fullerene coffins (5+1, 6+0 caps).
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Complex structure: poxviruses

Their large (visible in OM) capsids are brick-shaped or oval.

Orthopoxvirus Avian poxvirus
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T4: most complex known structure
Large DNA phage T4 has icosahedral (elongated) capsid
and helical tail with hexagonal base plate and many fibers.

– p. 77/85



Prolate-icosahedral capsid head of T4
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Geometry of bacteriophage T4

This icosahedral head + helical tail architecture is known
only (but common) in phages (viruses of bacteria) as the
best-sudied tailed phage T4 of Escherichia coli.

Such prolate icosahedral capsid has 20 triangular facets:
5+5 equilateral facets on caps, each defined by vector from
0 to (a1, b1) and having Tend=a2

1+a1b1+b2
1 basic triangles;

and 10 midsection facets, each defined by vectors from 0 to
(a1, b1), (ab, b2) and having Tmid=a1a2+a1b2+b1b2 triangles.
So, 10(Tend+Tmid) triangles, 30(Tend+Tmid) protein subunits.
For regular icosahedron, (a1, b1)=(a2, b2) and Tend=Tmid.

For phage T4, (a1, b1)=(3, 1); so, Tend=13.
Fokin et al, 2004 by cryo-EM: Tmid=20.
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VIII. More on

fullerenes
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Fullerenes in Organic Chemistry
Carbon C and, possibly, silicium Si are only 4-valent
elements producing homoatomic long stable chains or nets

Graphite sheet: “infinite fullerene”, bi-lattice (63),
Voronoi partition of the hexagonal lattice (A2).

Diamond packing: bi-lattice D-complex,
α3-centering of the lattice f.c.c.=A3.

Fullerenes: Kroto, Curl, Smalley, 1985 C60(Ih) (or tr.
icosahedon, football, Cayley of A5); Nobel prize 1996
but Ozawa, 1984 (in japanese). “Cheap” C60: 1990.
Iijima, 1991: nanotubes (coaxial cylinders).
Also isolated chemically by now: C70, C76, C78, C82, C84.
If > 100 carbon atoms, they go in concentric layers;
if < 20, cage opens for high temperature.

Full. alloys, stereo org. chemistry, carbon: semi-metal.
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Fullerenes as isom. subgraphs of12-cubes

All isometric embeddings of skeletons (with (5Ri, 6Rj) of
Fn), for Ih- or I-fullerenes or their duals, are:

F20(Ih)(5, 0) → 1

2
H10 F ∗

20(Ih)(5, 0) → 1

2
H6

F ∗
60(Ih)(0, 3) → 1

2
H10 F80(Ih)(0, 4) → 1

2
H22

(Shpectorov-Marcusani, 2007: all others isometric Fn

are 3 below (and number of isometric F ∗
n is finite):

F26(D3h)(−, 0) → 1

2
H12

F40(Td)(2,−) → 1

2
H15 F44(T )(2, 3) → 1

2
H16

F ∗
28(Td)(3, 0) → 1

2
H7 F ∗

36(D6h)(2,−) → 1

2
H8

Also, for graphite lattice (infinite fullerene), it holds:
(63)=F∞(0, 6) → H∞, Z3 and (36)=F ∗

∞(0, 6) → 1

2
H∞, 1

2
Z3.
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Embedding of duals and cell vesicles
The five above embeddable dual fullerenes F ∗

n correspond
exactly to five special (Katsura’s "most uniform") partitions
(53, 52.6, 5.62, 63) of n vertices of Fn into 4 types by 3
gonalities (5- and 6-gonal) faces incident to each vertex.

F ∗
20(Ih) → 1

2
H6 corresponds to (20,−,−,−)

F ∗
28(Td) →

1

2
H7 corresponds to (4, 24,−,−)

F ∗
36(D6h) → 1

2
H8 corresponds to (−, 24, 12,−)

F ∗
60(Ih) → 1

2
H10 corresponds to (−,−, 60,−)

F ∗
∞ → 1

2
H∞ corresponds to (−,−,−,∞)

It turns out, that exactly above 5 fullerenes were identified
as clatrin coated vesicles of eukaryote cells (the vitrified cell
structures found during cryo-electronic microscopy).
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Fullerenes as optimizers on sphere

To find n unit charged particles on sphere,
with minimal energy, is Thomson problem,
with maximal minimum distance, is Tammes problem.

Almost all optimizers for above problems, in the range
25 ≤ n ≤ 125, are fullerenes.
Then 7-gonal faces appear; if n > 300: almost always.

But Graver, 2005: in all large optimizers, the 5- and
7-gonal faces occurs in 12 distinct clusters,
corresponding to a unique underlying fullerene.
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Skyrmions and fullerenes

Conjecture (Battye-Sutcliffe, 1997): any minimal energy
Skyrmion (baryonic density isosurface for single soliton
solution) with baryonic number (the number of
nucleons) B ≥ 7 is a fullerene F4B−8.

Conjecture (true for B < 107; open from (b, a) = (1, 4)):
there exist icosahedral fullerene as a minimal energy
Skyrmion for any B = 5(a2 + ab + b2) + 2 with integers
0 ≤ b < a, gcd(a, b) = 1 (not any icosahedral Skyrmion
has minimal energy).

Skyrme, 1962 model is a Lagrangian approximating
QCD (a gauge theory based on SU(3) group).
Skyrmions are special topological solitons used to
model baryons.
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