Voronoi *L***-types and Hypermetrics**

Michel Deza

Mathieu Dutour

Ecole Normale Superieure, Paris

Rudjer Boskovic Institute, Zagreb

A finite set of points

Some relevant perpendicular bisectors

Voronoi polytope

Empty spheres

Delaunay polytopes

Synonyms

Voronoi polytope is $\mathcal{V}_x = \{v \in \mathbb{R}^n : d(v, x) \leq d(v, y) \text{ for } y \in X - \{x\}\},\$ for given locally finite subset X of \mathbb{R}^n . Its main synonyms are:

- Dirichlet domain (lattice theory, 2-dimensional case)
- Voronoi polytope (*n*-dimensional lattices, computational geometry)
- Thiessen polygon (geography), domain of influence (politics)
- Wigner-Seitz cell, first Brillouin zone, Bernal polytope,
 nearest neighbor region (solid state physics, crystallography)

Delaunay polytope synonyms:

- L-polytope (Voronoi in "Deuxéme mémoire")
- constellation or, mainly, hole (in Conway-Sloane);
 hole is deep if of maximal radius and, otherwise, shallow.
 Voronoi polytopes V_x form normal (face-to-face) tiling of Rⁿ.

I. Voronoi and Delaunay polytopes in lattices

The Voronoi polytope of a lattice

• A lattice L is a rank n subgroup of \mathbb{R}^n , i.e.,

$$L = v_1 \mathbb{Z} + \cdots + v_n \mathbb{Z}$$
.

• The Voronoi cell \mathcal{V} of L is defined by inequalities

 $\langle x,v\rangle \leq \frac{1}{2}||v||^2$ for $v \in L$.

• \mathcal{V} is a polytope, i.e., it has a finite number of vertices (of dimension 0), faces and facets (of dimension n-1).

The Voronoi polytope of a lattice

- Polytope \mathcal{V} is defined by inequalities $\langle x, v \rangle \leq \frac{1}{2} ||v||^2$.
- A vector v_0 is relevant if $\langle x, v_0 \rangle = \frac{1}{2} ||v_0||^2$ is a facet.
- Voronoi: a vector u is relevant if and only if it can not be written as u = v + w with $\langle v, w \rangle \ge 0$.

The Voronoi polytope of a lattice

- The translates $v + \mathcal{V}$ with $v \in L$ tile \mathbb{R}^n .
- ▶ \mathcal{V} has $\leq 2(2^n 1)$ facets and $\leq (n + 1)!$ vertices.
- Shortest vectors in L are relevant vectors.
- L is a root lattice iff all relevant vectors are shortest; they are called roots; their number is number of facets.

Irr. lattice	Nr. facets	Nr. vertices	Nr. orbits
A_n	n(n+1)	$2^{n+1} - 2$	$\lfloor \frac{n+1}{2} \rfloor$
D_n	2n(n-1)	$2^n + 2n$	2
E_6	72	54	1
E_7	126	632	2
E_8	240	19440	2

A root lattice is a direct sum of irreducible root lattice.

Comb. types of Voronoi \leq 3-polytopes

Two combinatorial types of Voronoi 2-polytopes: centrally symmetric hexagons (primitive) and rectangles.

– p. 8/8

Voronoi and Delaunay in lattices

- Vertices of Voronoi polytopes are centers of empty spheres which define Delaunay polytopes.
- Voronoi and Delaunay polytopes define dual normal tessellations of the space \mathbb{R}^n by polytopes.
- Every k-dimensional face of a Delaunay polytope is orthogonal to a (n k)-dim. face of a Voronoi polytope.

Any lattice L has finite number of orbits of Delaunay polytopes under translation; L-star: all with given vertex.

Empty spheres and Delaunay polytopes

A sphere S(c, r) of radius r and center c, in a n-dimensional lattice L, is called an empty sphere if:

(i)
$$||v - c|| \ge r$$
 for all $v \in L$,

(ii) $S(c,r) \cap L$ contains n + 1 affinely independent points. Delaunay polytope in L is a polytope with vertex-set

 $L \cap S(c,r)$.

Lattices with ≤ 2 Delaunay polytopes

• $L = \mathbb{Z}^n$; Delaunay polytope is unique:

Polytope	Center	Nr. vertices	Radius
Cube	$(\frac{1}{2})^n$	2^n	$\frac{1}{2}\sqrt{n}$

● $D_n = \{x \in \mathbb{Z}^n : \sum_{i=1}^n x_i \text{ is even}\}; \text{ Delaunay polytopes: }$

Polytope	Center	Nr. vertices	Radius
Half-Cube	$(\frac{1}{2})^n$	$\frac{1}{2}2^n$	$\frac{1}{2}\sqrt{n}$
Cross-polytope	$(1,0^{n-1})$	2n	1

• $E_8 = \{x \in \mathbb{Z}^8 \cup (\frac{1}{2} + \mathbb{Z})^8 : \sum_{i=1}^n x_i \text{ is even}\}; \text{ Delaunays:}$

Polytope	Center	Nr. vertices	Radius
Simplex	$\left(\frac{5}{6},\frac{1}{6}^7\right)$	9	$\sqrt{\frac{8}{9}}$
Cross-polytope	$(1, 0^7)$	16	1

Digression on the root lattice E_8

- Lattice E_8 is the integral span of its shortest (square length 2) vectors (240 roots): 112 permutations of $(\pm 1, \pm 1, 0, 0, 0, 0, 0, 0)$ and 128 permutations of $\frac{1}{2}(\pm 1, \pm 1)$ with even number of +. Convex hull of 240 roots is semi-regular 8-polytope 4_{21} .
- \bullet E₈ rescaled to minimal sq. length 1: integral octonions.
- **•** Lattice E_8 is self-dual; equiv. E_8 is unimodular (volume) of fund. parallelotope is 1). $|Aut(E_8)| = 4! \times 6! \times 8!$.
- E_8 is unique (nontrivial) even (any vector has even square length) self-dual *n*-dim. lattice with n < 16.
- Lie algebra E_8 , as a manifold, has dimension 8 + 240. In 2007, all its ∞ -dim. irr. representations were computed.
- $E_8 \times E_8$ is 1 of 2 even self-dual 16-dim. lattices. Only on them 16 dimensions of heterotic string compactify "well" -p. 12/8

I. Voronoi and Delaunay polytopes in lattices

Geometry of numbers by Minkowski

- Denote by PSD_n the convex cone of real symmetric positive definite $n \times n$ matrices.
- Lattice $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$ (spanned by basis v_1, \ldots, v_n) corresponds to the Gram matrix $G_{\mathbf{v}} = (\langle v_i, v_j \rangle)_{1 \le i,j \le n} \in PSD_n$.
- Elements of PSD_n can be seen as Gram matrices or as quadratic forms.
 It is convenient to think in lattice terms and compute in terms of quadratic forms.

Isometric lattices

• If $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n$ with $v_i = (v_{i,1}, \ldots, v_{i,n}) \in \mathbb{R}^n$, then $G_{\mathbf{v}} = V^T V$ for the following matrix:

$$V = \begin{pmatrix} v_{1,1} & \dots & v_{n,1} \\ \vdots & \ddots & \vdots \\ v_{1,n} & \dots & v_{n,n} \end{pmatrix}$$

- If $A \in PSD_n$, then there exists V such that $A = V^T V$.
- If $A = V_1^T V_1 = V_2^T V_2$, then $V_1 = OV_2$ with $O^T O = I_n$: orthogonal matrix O corresponds to an isometry of \mathbb{R}^n .
- Also, if *L* is a lattice in \mathbb{R}^n with basis v and *u* is an isometry of \mathbb{R}^n , then $G_v = G_{u(v)}$.

Changing basis

If v and v' are two bases of a lattice L, then V' = VPwith $P \in GL_n(\mathbb{Z})$. This implies:

$$\boldsymbol{G}_{\mathbf{v}'} = \boldsymbol{V'}^T \boldsymbol{V'} = (\boldsymbol{V}\boldsymbol{P})^T \boldsymbol{V}\boldsymbol{P} = \boldsymbol{P}^T \{\boldsymbol{V}^T \boldsymbol{V}\} \boldsymbol{P} = \boldsymbol{P}^T \boldsymbol{G}_{\mathbf{v}} \boldsymbol{P}$$

• If $A, B \in PSD_n$, they are called arithmetically equivalent if, for some $P \in GL_n(\mathbb{Z})$, it holds:

$$A = P^T B P.$$

- There is a bijection between (arithmetic) equivalence classes $PSD_n/GL_n(\mathbb{Z})$ and isometry (equivalence) classes of lattices in \mathbb{R}^n .
- GL_n(F) is the general linear group of n × n invertible matrices over field or ring F with matrix multiplication.
 Orthogonal group: its subgroup of orthogonal matrices

An example: A_2

• Take the hexagonal lattice A_2 and two bases in it.

The enumeration problem

- Given a matrix $A \in PSD_n$, we want to compute the Delaunay polytopes of a lattice corresponding to A.
- There is a finite number of Delaunay polytopes, up to translation, but still of the order of (n + 1)!.
- If $A \in PSD_n$, then its symmetry group is finite:

$$Aut(A) = \{ P \in GL_n(\mathbb{Z}) : A = P^T A P \}.$$

 Aut(A) corresponds to isometries of the corresponding lattice. Those symmetries can be used to accelerate the computation.

Finding Delaunay polytopes

- Given a Delaunay polytope and a facet of it, there exist a unique adjacent Delaunay polytope.
- We use an iterative procedure:
 - Select a point outside the facet.
 - Create the sphere incident to it.
 - If there is no interior point, finish; otherwise, rerun with this point.

Finding Delaunay decomposition

- Find the isometry group of the lattice (program autom by Plesken & Souvignier).
- Find an initial Delaunay polytope (program finddel by Vallentin) and insert into list of orbits as undone.

Iterate

- Find the orbit of facets of undone Delaunay polytopes (GAP + Irs by Avis + Recursive Adjacency Decomposition method by Dutour).
- For every facet, find the adjacent Delaunay polytope.
- For every Delaunay polytope, test if it is isomorphic to existing ones.
 If not, insert it into the list as undone.
- Finish when every orbit is done.

L-type domains and L-types

L-type domains by Voronoi

- A *L*-type domain is the set of matrices $G_v \in PSD_n$ corresponding to the same Delaunay decomposition, i.e., the same combinatorial type of Voronoi polytope.
- Geometrically, for example, Gram matrices of following lattices belong to the same L-type domain:

 Specifying Delaunay polytopes means putting some linear equalities and inequalities on the Gram matrix.
 A priori, infinity of inequalities but finite number suffices

L-types by Voronoi

- An L-type is the union of L-type domains which are isomorphic under linear transformations. The number of L-types is finite, while there is infinity of L-type domains.
- L-type domains are convex polyhedral cones (open but in dim. 1 case edge forms) face-to-face tiling PSD_n .
- This partition is invariant with respect to $GL_n(\mathbb{Z})$.
- There are finitely many orbits, which correspond to non-isomorphic combinatorial type of Voronoi polytopes
- Two lattices in the same *L*-type \mathcal{LT} can be continuously deformed without changing the structure.
- If $dim(\mathcal{LT}) = \binom{n+1}{2}$ (i.e., Delaunay partition is simplicial), then \mathcal{LT} is called primitive or non-special.
- If $dim(\mathcal{LT}) = 1$ (i.e. only scaling preserves *L*-type), then \mathcal{LT} is called rigid and resp. quadratic form is edge form. -p.23

Equivalence and enumeration

- Voronoi: the inequalities, obtained by taking adjacent simplices, suffice to describe all inequalities.
- If there is no equalities, i.e., if all Delaunay polytopes are simplices, then the *L*-type is called primitive.
- The group $GL_n(\mathbb{Z})$ acts on PSD_n by arithmetic equivalence and preserves primitive *L*-type domains.
- After this action, there is a finite number of them.
- Bistellar flipping creates new triangulation. In dim. 2:

Enumerating primitive L-types is done classically: find one primitive L-type domain, then adjacent ones and reduce by arithmetic equivalence.

Flipping

Given a primitive *L*-type domain, how to describe the structure of adjacent *L*-type domains?

- Its Delaunay tessellation consists of simplices.
- A facet of the *L*-type correspond to some Delaunay simplices merging into a Delaunay polytope with n + 2 vertices, called repartitioning polytope.
- Polytopes with n + 2 vertices admit exactly two triangulations, the other one yields the adjacent L-type.

The partition of $PSD_2 \subset \mathbb{R}^3$

The partition of $PSD_2 \subset \mathbb{R}^3$

We cut by the plane u + w = 1 and get a circle representation.

Simplicial (primitive) *L*-types are inside triangles, while on lines, Delaunay partition is the square lattice (special *L*-type):

If $q(x, y) = ux^2 + 2vxy + wy^2$, then $q \in PSD_2$ if and only if $v^2 < uw$ and u > 0; we cut by the plane u + w = 1.

The group $GL_2(\mathbb{Z})$ transforms the limit form x^2 into the forms $(ax + by)^2$ with $a, b \in \mathbb{Z}$. Only 1-dim. Voronoi polytopes.

Inside triangles: Voronoi polytope is hexagonal (primitive). On lines: Voronoi polytope is rectangular (special).

Enumeration of primitive, rigid *L***-types**

Dimension	Nr. Voronoi polytopes	Nr. of primitive	Nr of rigid
1	1	1 1	
2	2	2 1	
3	5 1		0
	Fedorov	Fedorov	
4	52	3	1
	Delaunay-Shtogrin	Delaunay	
5	179377	222	7
	Engel	BaRy, Engel	↑ BaGr
6	?	$\geq 2.5.10^{6}$	$\geq 2.10^{4}$
		Engel, Va	DuVa
7	?	?	?

Rigid lattices (edge forms)

- All rigid lattices in dimensions 1, 2, 3, 4: \mathbb{Z}_1 and $D_4 = D_4^*$.
- Also rigid: E_6 , E_6^* , E_7 , E_7^* , $E_8 = E_8^*$, as well as $D_n, n > 4$, and $D_{2m}^*, m > 2$.
- There are 7 rigid lattices in dimension 5 and ≥ 25263 in dimension 6.
- A Delaunay is extreme if the lattice, containing it, is unique, i.e., the combinatorics determines the structure.
- Erdahl: a Voronoi polytope V is a zonotope if and only if all edge forms of the closure of its L-type domain are matrices of rank 1, i.e., of the form a^Ta; then zonotope V is the Minkowski sum of such scaled vectors a.

Non-rigidity degree of a lattice

Denote by nrd(L) (non-rigidity degree of lattice L) the dimension of L-type domain to which belongs its quadratic form. It is the number of degrees of freedom, under affine deformation, of (the L-star of) Delaunay partition.

- $1 \le nrd(L) \le \binom{n+1}{2}$ with equalities, respectively, iff *L* is rigid and iff *L* is primitive (only simplices).
- Ind(L) ≤ min rank(P) over its Delaunay polytopes P.
 $nrd(\mathbb{Z}_n) = n = rank(n\text{-}cube) \text{ (}n \ge 1\text{)};
 nrd(A_n) = n + 1 = rank(J(n + 1, k), 2 \le k \le n) \text{ (}n \ge 2\text{)};
 nrd(A_n^*) = \binom{n+1}{2} = rank(n\text{-}simplex J(n + 1, 1)) \text{ (}n \ge 2\text{)}.$
- Remaining irreducible root lattices and their duals are either rigid, or $nrd(D^*_{2m+1}) = 2m + 1$ ($m \ge 2$).

• nrd(L+L')=nrdL+nrdL'; $rank(P \times P')=rankP+rankP'$.

Non-rigidity degree of a lattice

The lattice vector between any 2 vertices of a Delaunay polytope of *L* is a minimal vector of a coset of L/2L. For an edge, the coset contains, up to sign, unique minimal vector.

- $nrd(L) = \binom{n+1}{2} rankS(L)$, where S(L) is the system of equations defining the norms of minimal vectors of cosets L/2L, i.e., of all minimal affine dependencies of vertices of all non-equiv. Delaunay polytopes in L-tiling.
- rank(P) is the dimension of minimal face of HYP_{n+1} containing generating set of Delaunay polytope P. It is the topological dimension of the set of affine bijections T of \mathbb{R}^n (up to translations and orthogonal transformations) such that T(P) is again Delaunay.

• It holds: $1 \le nrd(L) \le \min_P rank(P) \le \binom{n+1}{2}$.

III. Delaunay polytopes and

hypermetrics

Hypermetric inequalities

• If $b \in \mathbb{Z}^{n+1}$, $\sum_{i=0}^{n} b_i = 1$, then hypermetric inequality is

$$H(b)d = \sum_{0 \le i < j \le n} b_i b_j d(i,j) \le 0 .$$

• If $b = (1, 1, -1, 0, \dots, 0)$, then H(b) is triangle inequality.

• The hypermetric cone HYP_{n+1} is the set of all d such that $H(b)d \leq 0$ for all b.

$$Im HYP_{n+1} = \binom{n+1}{2}.$$

• HYP_{n+1} is defined by an infinite set of inequalities, but it is polyhedral (Deza-Grishukhin-Laurent).

Cut cone

The cut semi-metric on $X = \{0, \ldots, n\}$, for any $S \subset X$, is

$$\delta_{S}(i,j) = \begin{cases} 1 & \text{if } |S \cap \{i,j\}| = 1\\ 0 & \text{otherwise} \end{cases}$$

It can be seen as squared distance on the 1-dim. Delaunay polytope $\alpha_1 = [0, 1]$ which is extreme Delaunay of lattice \mathbb{Z} .

Denote by CUT_{n+1} the cone generated by all $(2^n - 1) \delta_S$.

• $CUT_{n+1} \subset HYP_{n+1}$ for all n and $= HYP_{n+1}$ iff $n \le 5$. So, other extreme Delaunays appear only from $n \ge 6$.

• $HYP_{n+1} \subset MET_{n+1}$ for all n and $= MET_{n+1}$ iff $n \leq 3$.

Digression on *l*_{*p*}**-metrics**

- $\{d: ((d_{ij}^2)) \in NEG_n\} \subset CUT_n \subset HYP_n \subset (NEG_n \cap MET_n)$ iff $d \to l_2^{n-1}$ iff $d \to l_1^m$ iff $d \to l_\infty^{n-2}$
- Given a metric $d = ((d_{ij}))$ on n points, $d \to l_p^m$ means that it is a metric subspace of \mathbb{R}^m with norm l_p , i.e. $d_{ij} = ||\vec{v_i} - \vec{v_j}||_p$ for some $\vec{v_i}, \dots, \vec{v_n} \in \mathbb{R}^m$.
- $NEG_n = \{d : \sum_{0 \le i < j \le n} b_i b_j d(i, j) \le 0\} \text{ if } b \in \mathbb{R}^n, \sum_{0=1}^n b_i = 0$ $PSD_{n-1} = \{a = ((a_{ij} = \frac{1}{2}(d_{1i} + d_{1j} - d_{ij}))) : d \in NEG_n\}.$
- $d \in HYP_n$ iff $\sqrt{d} \to S^{n-2}$ and it is a generating simplex of a Delaunay polytope of a lattice in \mathbb{R}^{n-1} .

•
$$l_2 \rightarrow \text{any } l_{p(p \ge 1)} \rightarrow l_{\infty} \text{ and } l_{p(1 \le p \le 2)} \rightarrow l_1.$$

• Unit balls of l_p^m is cube γ_m , its dual β_m , S^{m-1} , smooth, for $p = \infty, 1, 2$, any 1 .

Facets of HYP_7 and CUT_7

 HYP_7 has 3773 facets in 14 orbits below. It has 31170 extreme rays in 29 orbits:

3 of cut semi-metrics and 26 from 7-subsets of 27-vertex-set of extreme Schlafli 6-polytope of the root lattice E_6 .

(1,1,-1,0,0,0,0)	(1 , 1 , 1 ,-1,-1, 0 , 0)
(1 , 1 , 1 , 1 ,−1 ,−2 , 0)	(2 , 1 , 1 ,-1,-1, 0)
(1 , 1 , 1 , 1 ,-1,-1,-1)	(2 , 2 , 1 ,-1,-1,-1,-1)
(1 , 1 , 1 , 1 , 1 , −2 , −2)	(2 ,1 ,1 ,1 ,-1 , -1 , -2)
(3 , 1 , 1 , -1, -1, -1, -1)	(1 ,1 ,1 ,1 ,1 ,-1 , -3)
(2,2,1,1,- 1,-1,-3)	(3 , 1 , 1 , 1 ,-1,-2,-2)
(3,2,1, $-1,-1,-2$)	(2 , 1 , 1 , 1 , 1 , −2, −3)

First 10 orbits above are also of facets of CUT_7 . It has 36 orbits of facets, 26 of which are non-hypermetric.

Delaunay polytopes \rightarrow **hypermetrics**

If \mathcal{D} is an *n*-dimensional Delaunay polytope with center c, radius r and vertices $\{v_0, \ldots, v_N\}$, then $d(i, j) = ||v_i - v_j||^2$ satisfies, for any $b \in \mathbb{Z}^{N+1}$ with $\sum_{i=0}^N b_i = 1$,

$$H(b)d := \sum_{i,j} b_i b_j d(i,j) = 2(r^2 - \|\sum_i b_i v_i - c\|^2) \le 0,$$

i.e., distance d(i, j) is a hypermetric on $X = \{0, 1, ..., N\}$. Moreover, $\sum_i b_i v_i$ is a vertex of \mathcal{D} if and only if H(b)d = 0.

Delaunay polytopes \rightarrow **hypermetrics**

If \mathcal{D} is an *n*-dimensional Delaunay polytope with center c, radius r and vertices $\{v_0, \ldots, v_N\}$, then $d(i, j) = ||v_i - v_j||^2$ satisfies, for any $b \in \mathbb{Z}^{N+1}$ with $\sum_{i=0}^{N} b_i = 1$,

$$H(b)d := \sum_{i,j} b_i b_j d(i,j) = 2(r^2 - \|\sum_i b_i v_i - c\|^2) \le 0,$$

i.e., distance d(i, j) is a hypermetric on $X = \{0, 1, ..., N\}$. Moreover, $\sum_i b_i v_i$ is a vertex of \mathcal{D} if and only if H(b)d = 0.

Delaunay polytopes \Leftrightarrow **hypermetrics**

- Let $||v_i c|| = ||c||$ for $c, v_0 = 0, v_1, \dots, v_N \in \mathbb{R}^n$, and $||\sum_i b_i v_i - c|| \ge ||c||$ for all $b \in \mathbb{Z}^N$. Then the set $L := \mathbb{Z}(v_1, \dots, v_N)$ is a lattice.
- A distance d on $X = \{0, 1, ..., N\}$ is a hypermetric if and only if (X, d) has a representation $i \in X \rightarrow v_i \in \mathbb{R}^k$, $k \leq N$, on sphere S, which is empty (not containing its elements in the interior) for the set $L_{af} := \{\sum_i b_i v_i : b \in \mathbb{Z}^X, \sum_{i=0}^N b_i = 1\}.$ The elements of L_{af} on this sphere, generate a lattice (root lattice iff hypermetric d is graphic, i.e., $d_{path}(G)$). They form an affine basis of its Delaunay polytope.
- D.-Terwilliger: $d_{path}(G) \in HYP_n$ iff 2d is an isometric subspace of a direct product $\frac{1}{2}H_m \times K_{m \times 2} \times G_{56}$ for m > 6. Shpectorov; D., Grishukhin: $d_{path}(G) \in CUT_n$ iff no G_{56} .

Radius of Delaunay polytopes

- D.-Grishukhin, 1993: Let (X, d) be a hypermetric space and P_d be its associated Delaunay polytope; let r be the radius of the sphere circumscribing P_d . If $\sum_{i \in X} d(i, j)$ does not depend on $j \in X$, then $r^2 = \frac{1}{2|X|} \sum_{j \in X} d(i, j)$.
- **D.-Grishukhin**, 1996:

Let *L* be a *n*-dimensional lattice in \mathbb{R}^n with covering radius (maximum radius of a Delaunay polytope) $\rho(L)$. Let *R* denote the maximum radius of a symmetric Delaunay polytope of *L* (setting R = 0 if none exists). Let *r* denote the maximum radius of a proper symmetric face of a Delaunay polytope of *L*.

Then $\rho(L) = R$ if $R \ge \frac{2r}{\sqrt{3}}$ and, otherwise, $R \le \rho(L) \le \frac{2r}{\sqrt{3}}$.

Affine basis

Any Delaunay has n + 1 affinely independent vertices. $\{v_0, \ldots, v_n\}$ is affine basis of an *n*-dimensional polytope *P* if, for every vertex *v* of *P*, there is $\{b_i\} \in \mathbb{Z}^{n+1}$ with

$$b_0 + \dots + b_n = 1$$
 and $b_0 v_0 + b_1 v_1 + \dots + b_n v_n = v$.

Baranovski & Ryshkov: every Delaunay polytope of dimension ≤ 6 has an affine basis. Dutour-Grishukhin: contre-example (12-dimensional 14-vertex polytope).

Polyhedrality of HYP_n

DGL: HYP_n is polyhedral as union of *L*-type domains.

- HYP₈ has ≥ 294.056 (84 orbits) of facets.
 It has ≥ 7.126.560 (374 orbits) of extreme rays (all
 generating simplexes of the Gosset polytope in E_7)
 including 55 orbits of graphic hypermetrics.
- Lovasz: if H(b) defines a facet, then $|b_i| \leq \frac{2^n}{\binom{2n}{n}} n!$.
- To find all faces of HYP_n implies to find all Delaunay polytopes of dimension $\leq n 1$.

Rank of Delaunay polytope

The rank(P) is dimension of the face F with $P \in F$; it is the number of degrees of freedom (parameters) of affine deformation preserving it as Delaunay polytope.

• if
$$rank(P) = \binom{n+1}{2}$$
, then P is a simplex α_n .

- if $rank(P) = \binom{n+1}{2} 1$, then $P = Pyr(\alpha_p \cup \alpha_q)$ (*repartitioning polytope* in Voronoi terms).
- if rank(P) = 1, then P is an extreme Delaunay polytope (one degree of freedom: homotheties and rotations).
- Example: rank of α_n , β_n , γ_n , $\frac{1}{2}\gamma_{n>4}$, J(n+1, k>1) is, respectively, $\binom{n+1}{2}$, $\binom{n}{2} + 1$, n, n, n+1.

3-simplex

Hypermetric Vectors

Rank: 6

Octahedron

H(-2, 1, 1, 1)=H(-1, 0, 1, 1)+H(-1, 1, 0, 1)+H(-1, 1, 1, 0)

Comb. types of Delaunay 3-polytopes

Dim.	Nr. of types	Authors	Computing time
2	2	Fedorov (1885)	
3	5	Fedorov (1885)	23s
4	19	Erdahl & Ryshkov (1987)	52s
5	138	Kononenko (1997)	5m
6	6241	Dutour (2002)	50h

Maximal volume of Delaunay polytope

- det(L) is the volume of parallelepiped on basis of *L*. $\frac{det(L)}{n!}$ is the fundamental volume (of simplex on basis).
- The volume of any Delaunay *n*-polytope is its integral multiple, say, α . For any α , there is a lattice in $\mathbb{R}^{2\alpha+1}$ with Delaunay simplex of relative volume α .
- Any Delaunay *n*-simplex with $\alpha > 1$ does not contain a basis of *L*; so, it generates only proper sublattice of *L*.
- Conjecture: $\max \alpha = n 3$ for Delaunay *n*-simplex; proved for n = 4, 5, 6 by Voronoi, Baranovski, Ryshkov.
- Santos, Schürmann & Vallentin: $\max \alpha \ge 1.5^n$ if $24 \mid n$. Lovasz: $\max \alpha \le \frac{2^n}{\binom{2n}{n}} n!$; remind his bound $|b_i| \le \frac{2^n}{\binom{2n}{n}} n!$
- Sph. packing density $\leq \frac{v_n}{\kappa_n}$, where κ_n, v_n are volume of unit ball and minimal volume of Voronoi polytope.

Number of vertices of Delaunay polytope

- Every incidence H(b)d = 0 corresponds to a vertex $b_0v_0 + \cdots + b_nv_n$ of a Delaunay *n*-polytope *P*.
- The number N of vertices satisfies $n + 1 \le N \le 2^n$ (with equalities for *n*-simplex and *n*-cube) and:

 $rank(P) \ge {\binom{n+2}{2}} - N$ for any Delaunay and $rank(P) \ge {\binom{n+1}{2}} - \frac{N}{2} + 1$ for centr. symmetric ones.

- So, N ≥ $\binom{n+2}{2}$ − 1 for extreme Delaunay polytopes and N ≥ 2 $\binom{n+1}{2}$ if, moreover, polytope is centrally symmetric
- If equality in above bounds (as for Erdahl-Rybnikov polytopes), then the adjacency computation for the corresponding extreme ray of HYP_{n+1} is easy.

IV. Extreme Delaunay polytopes

Extreme Delaunay polytopes

- ▶ The interval [0,1] is the only extreme Delaunay polytope in dimension $n \le 5$, since $HYP_n = CUT_n$ if $n \le 6$.
- Deza & Dutour: there is an unique extreme Delaunay polytope in dimension 6 (the Schläfli polytope 2_{21}).
- Deza, Grishukhin & Laurent found 6 extreme polytopes:

Name	Dimension	Nr. vertices	Equality	Section of
Schläfli	6	27	yes	E_8
Gosset	7	56	no	E_8
	16	512	no	Barnes-Wall
B_{15}	15	135	yes	Barnes-Wall
	22	275	yes	Leech
	23	552	no	Leech

The Schläfli polytope

Root lattices E_6 and E_8 :

$$E_6 = \{ x \in E_8 : x_1 + x_2 = x_3 + \dots + x_8 = 0 \},\$$

$$E_8 = \{ x \in \mathbb{Z}^8 \cup (\frac{1}{2} + \mathbb{Z})^8 \text{ and } \sum_i x_i \in 2\mathbb{Z} \}.$$

 E_6 has unique Delaunay polytope called Schläfli polytope; its skeleton is the (strongly regular) Schläfli graph.

- Schläfli polytope has 27 vertices.
- Symmetry group has size 51840, transitive on vertices.
- Schläfli polytope is extreme Delaunay polytope.
- Deza-Grishukhin-Laurent: it has 26 orbits of affine bases, which gives 26 orbits of extreme rays in HYP_7 .

Computing methods

Given a distance vector $d_{ij} = ||v_i - v_j||^2$,

- one can compute the Gram matrix $\langle (v_i v_0), (v_j v_0) \rangle$,
- **•** test if d is non-degenerate,
- compute the sphere S(c,r) incident to v_i .
- $d \in HYP_{n+1}$ if and only if there is no b with

$$\|b_0 v_0 + \dots + b_n v_n - c\| < r$$

(i.e., Closest Vector Problem).

• Find b, such that H(b)d = 0, is also a CVP.

Bounding method

8-dimensional extreme Delaunay

Delaunay B_{15} satisfies equality in $N \ge \binom{n+2}{2} - 1 = 135$. Dutour: its adjacent extreme rays correspond to an extreme Delaunay 8-polytope Du_8 with *f*-vector:

(79, 1268, 7896, 23520, 36456, 29876, 11364, 1131)

Its symmetry group has size 322560, not vertex-transitive. There are three orbits of vertices:

- a vertex
- 64-vertices: the 7-half-cube
- 14-vertices: the 7-cross-polytope

Dutour series of extreme Delaunays

- If *n* even, $n \ge 6$, there is an asymmetric extreme Delaunay Du_n formed with 3 layers of lattice D_{n-1} :
 - a vertex
 - the (n-1)-half-cube
 - the (n-1)-cross-polytope
 - n = 6: Schläfli polytope; n = 8: Du_8
- If *n* odd, $n \ge 7$, there is a centrally symmetric extreme Delaunay Du_n formed with 4 layers of lattice D_{n-1} :
 - a vertex
 - the Du_{n-1} extreme Delaunay
 - the Du_{n-1} extreme Delaunay
 - a vertex
 - n = 7: Gosset polytope 3_{21} .

Erdahl-Rybnikov infinite series

 Du_n have exponential number N of vertices: 2ⁿ⁻² + 2n − 1 for even n ≥ 6, 2ⁿ⁻² + 4n − 4 for odd n ≥ 7.
 Conjecture: this N is maximal amongst all extreme Delaunay n-polytopes. For all other known ones, N is a polynomial of n.

• Erdahl & Rybnikov, 2002 constructed series of extreme Delaunay polytopes ER_n with minimal N: asymmetric ones, for $n \ge 6$, with $N = \binom{n+2}{2} - 1$ starting with Schläfli polytope, and centrally symmetric ones, for $n \ge 7$, with $N = 2\binom{n+1}{2}$ starting also with Gosset polytope.

• For both series, N = 27 for n = 6 and N = 56 for n = 7.
Grishukhin infinite series

- Asymmetric Du_n and ER_n (with even n) generalize partitions $\alpha_0 + \frac{1}{2}\gamma_5 + \beta_5$ and $\alpha_5 + J(6, 2) + \alpha_5$ of Schläfli polytope into D_5 - and A_5 -layers, resp. No extreme Delaunay decomposes into < 3 layers (lamina); all known ones have a decomposition with exactly 3 layers.
- Grishukhin, 2006 constructed series $Gr_n(t)$ depending on a second parameter $1 \le t < \frac{n-3}{2}$; the case t = 1gives ER_n . $Gr_n(t)$ has $N = 2n + \binom{n}{t+1}$ vertices. He constructed also series $Gr_n^a(t)$ of assymmetric ones (for the same n, t) by adding $\binom{n}{t} + 2$ new vertices to $Gr_n(t)$; so, it has same N as $Gr_{n+1}(t)$ but it is different. He also gave, for each $Gr_{n=2t+4}(t)$, a symmetric one having it as a section.
- Erdahl, Ordine, Rybnikov, 2007: 3-parametric series.

Extreme Delaunays with $n \leq 9$

Idea is to apply the bounding method to the extreme Delaunay Du_8 , obtain new extreme Delaunay polytopes, reapply the method, test by isomorphy, etc.

- Only segment and Schlafli in dimensions ≤ 6 .
- Conjectured list in dimension 7:

Nr.vertices	Nr.facets	Sym
35asymm.	228	1440 (Erdahl & Rybnikov)
56symm.	702	2903040 (Gosset)

- 27 extreme Delaunay polytopes in dimension 8; all? $\binom{8+2}{2} 1 = 44 \le N \le 79$ with equality for Du_8 .
- > 21500 in dimension 9. Perhaps, not so big growth.

27 extreme Delaunays in dimension 8

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ſ	Nr.vertices	Nr.facets	Sym	46	523	36
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ľ	79	1131	322560 <i>ED</i> ₈	46	476	288
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		72	1798	80640	45	571	192
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		72	354	80640	45	559	48
		58	664	1440	45	582	144
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		55	355	288	45	414	1296
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		54	375	864	44	559	48
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		54	539	384	44	559	240
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		52	634	192	44	504	2880
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		49	546	288	44	599	144
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		19 /19	535	200 960	44	529	10080
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		45	534	18	44	538	72
		47	171 171	9A	44	480	288
		41 17	305		44	559	72

– p. 58/8

V. Lattice packing and

lattice covering

Lattice packing

We consider packing by n-dimensional balls of the same radius, whose center belong to a lattice L.

Objective is to maximize the packing density:

$$\alpha(L) = \frac{\lambda(L)^n \kappa_n}{\det(L)} \le 1,$$

where κ_n , det(L) are volumes of the unit ball, unit cell, and packing radius (inradius of Voronoi polytope) is:

$$\lambda(L) = \frac{1}{2} \min_{v \in L - \{0\}} ||v||$$

Lattice covering

• We consider covering of \mathbb{R}^n by *n*-dimensional balls of the same radius, whose centers belong to a lattice *L*.

Objective is to minimize the covering density:

$$\Theta(L) = \frac{\mu(L)^n \kappa_n}{\det(L)} \ge 1$$

with covering radius $\mu(L)$ being the maximum distance of points of \mathbb{R}^n to a closest lattice vector. $\mu(L)$ is largest radius of Delaunay polytopes of *L*. Best (i.e., sparest) lattice covering for $n \leq 5$: A_n^* .

– p. 61/8

Lattice packing-covering

- We want a lattice L in \mathbb{R}^n , such that the sphere packing (resp, covering) obtained by taking spheres centered in L with maximal (resp, minimal) radius, are both good.
- The quantity of interest is:

$$\frac{\Theta(L)}{\alpha(L)} = \left(\frac{\mu(L)}{\lambda(L)}\right)^n \ge 1.$$

• Lattice packing-covering problem: minimize $\frac{\Theta(L)}{\alpha(L)}$.

Dim.	Solution	Dimension	Solution
2	A_2^*	4	H_4 (Horvath lattice)
3	A_3^*	5	H_5 (Horvath lattice)

Minimal volume of Voronoi polytope

- For spherical packing: let v_n be minimal volume v_n of Voronoi polytope over subsets X of \mathbb{R}^n with $d(x, y) \ge 2$.
- For n = 2, 3 and 4, 8, 24, it is hexagon, Dodecahedron (regular ones) and, conjecturally, Voronoi polytopes of D_4 , E_8 , Leech lattice, respectively.
- Density of any sphere packing of \mathbb{R}^n is at most $\frac{v_n}{\kappa_n}$ with equality if and only if a minimal \mathcal{V}_x face-to-face tiles \mathbb{R}^n .
- So, equality n = 4, 8, 24, but not for n = 3: Dodecahedron gives local, but not global min.
- Best (i.e., densest) packing is $\frac{\pi}{\sqrt{12}} \approx 0.9069$ (Lagrange, for n = 2) by A_2 . For n = 3, it is $\frac{\pi}{\sqrt{18}} \approx 0.74$ by A_3 (Hales-Ferguson, 1998, proved Kepler Conjecture).

Perfect forms

Optimal lattice packings come from the theory of perfect forms and perfect domains; see "Premier mémoire" by Voronoi (1908) and book by Martinet.

For a form $A \in PSD_n$, define $\min(A) = \min_{v \in \mathbb{Z}^n \neq 0} vA^t v$ and Min(A) the set of shortest (realizing $\min(A)$) vectors $v \in \mathbb{Z}^n$.

- A form A is called perfect if is defined by Min(A), i.e., $vB^tv = \min(A)$ with $v \in Min(A)$ implies B = A.
- A lattice is perfect if it has a basis v with perfect G_v .
- Korkine-Zolotarev: if a form has local maximum of packing density, then it is perfect.
- Perfect forms have rational coefficients.
- The number |Min(A)| of shortest vectors is $\geq n(n+1)$, since cone dimension is $\binom{n+1}{2}$ and they come as $\{v, -v\}_{-p.64/8}$.

Perfect domains

If A is perfect, its perfect domain (P-domain) is cone:

$$\{\sum_{v\in Min(A)}\lambda_v v^T v: \lambda_v \ge 0\}.$$

- Voronoi: all *P*-domains form a polyhedral normal tiling of PSD_n , and there is a finite number of perfect forms A_i , up to $GL_n(\mathbb{Z})$ -equivalence $A = P^T A_i P$.
- L-tiling coincides with P-tiling for n = 2, 3 and refines it for n = 4, 5 but not (Erdahl-Rybnikov) for n = 6.
- **Dickson**: *P*-domain = *L*-domain only for A_n .
- L- and P-tilings are two polyhedral reduction tilings of PSD_n into open polyhedral cones (domains): both tilings are invariant with respect to $GL(n,\mathbb{Z})$ and have finitely many non-equivalent domains.

Enumeration of perfect forms

Dim.	Nr. of forms	Best form	Authors	
1	1	A_1		
2	1	A_2	Lagrange	
3	1	A_3	Gauss	
4	2	D_4	Korkine-Zolotareff	
5	3	D_5	Korkine-Zolotareff	
6	7	E_6	Barnes	
7	33	E_7	Jaquet	
8	10916	E_8	Dutour, Schurmann, Vallentin	

Best packings (all by lattices)

Dimension	Best lattice packing	Best packing
2	A _{hex} (Lagrange)	A _{hex} (Lagrange)
3	A_3 (Gauss)	A_3 (Hales & Ferguson)
4	D_4 (Korkine & Zolotarev)	?
5	D_5 (Korkine & Zolotarev)	?
6	E_6 (Blichfeldt)	?
7	E_7 (Blichfeldt)	?
8	E_8 (Blichfeldt)	?
9,11	Λ_9, Λ_{11} (laminated lattices)?	?
10,12	K'_{10}, K_{12} (Coxeter-Todd lattices)?	?
16	BW_{16} (Barnes-Wall lattice)?	?
24	Leech (Cohn & Kumar)	?

Lamination

Given a *n*-dim. lattice *L*, create a (n + 1)-dim. lattice *L'*:

• The point *c* is fixed orthogonal projection of v_{n+1} on *L*. We vary the value of *h* to get a PSD_n -space.

Lamination

In terms of Gram matrices,

$$Gram(L) = A$$
 and $Gram(L') = \begin{pmatrix} A & A^{t}c \\ cA & \alpha \end{pmatrix}$

c is the projection of the vector $(0, \ldots, 0, 1)$ on lattice L.

• The symmetries of L' are the symmetries of L preserving the center c and, if $2c \in \mathbb{Z}^n$, the othogonal symmetry

$$\left(\begin{array}{cc}I_n & 0\\2c & -1\end{array}\right)$$

 \bullet c can be chosen as the center of a Delaunay polytope.

Lamination

- Conway & Sloane: for the packing problem, one finds that the best lattice, containing L as a section, is defined by taking c to be a deep hole (i.e., Delaunay polytope of maximal radius). They obtain a family Λ_n of lattices.
- For the covering problem, things are not so simple: one cannot solve the general problem with c unspecified, since it has no symmetry and too much parameters.
- By doing lamination over Coxeter-Barnes lattices A_9^5 and A_{11}^4 , one gets a record covering (Coxeter-Todd lattices K_{10}, K_{12}) in dimension 10 and 12.

Best known coverings (all by lattices)

n	Lattice	Covering density Θ			
1	\mathbb{Z}^1	1	13	L_{13}^c	7.762108
2	A_2^*	1.209199	14	L_{14}^c	8.825210
3	A_3^*	1.463505	15	L_{15}^c	11.004951
4	A_4^*	1.765529	16	A^*_{16}	15.310927
5	A_5^*	2.124286	17	A^9_{17}	12.357468
6	L_6^c	2.464801	18	A^*_{18}	21.840949
7	L_7^c	2.900024	19	A^{10}_{19}	21.229200
8	L_8^c	3.142202	20	A_{20}^7	20.366828
9	L_9^c	4.268575	21	A_{21}^{11}	27.773140
10	L_{10}^c	5.154463	22	Λ^*_{22}	≤ 27.8839
11	L_{11}^c	5.505591	23	Λ^*_{23}	≤ 15.3218
12	L_{12}^c	7.465518	24	Leech	7.903536

Bambah, Ryshkov-Baranovskii: A_n^* is best for $2 \le n \le 5$.

Coxeter-Barnes lattices

• The lattice A_n is defined as

$$A_n = \{x \in \mathbb{Z}^{n+1}, \text{ such that } \sum x_i = 0\}.$$

If r divides n + 1, then define the lattice A_n^r by

$$A_n^r = A_n \cup v_{n,r} + A_n \cup \ldots \cup (r-1)v_{n,r} + A_n,$$

where
$$v_{n,r} = \frac{1}{r} \sum_{i=1}^{n+1} e_i - \sum_{i=1}^{q} e_i$$
 and $q = \frac{n+1}{r}$,

i.e., A_n^r is the union of r translates of A_n .

- The dual $(A_n^r)^*$ of A_n^r is A_n^q .
- One has $A_n^1 = A_n \subset A_n^r \subset A_n^* = A_n^{n+1}$.

Coxeter-Barnes lattices

- $A_8^3 = E_8$, $A_7^2 = E_7$; so, their automorphism groups are $W(E_7), W(E_8)$.
- For other (n, r), $Aut(A_n^r) = Aut(A_n) = \mathbb{Z}_n \times Sym(n+1)$. So, the symmetry group of A_n^r is relatively large, much larger than one of Leech or Thompson lattices. Those lattices are interesting since their symmetry groups are large and related to sporadic simple groups.
- Their Delaunay polytopes can also be big: one of 21 orbits of A_{21}^2 consists of 40698-vertex polytopes.
- Strong algebraic structures are expected because stabilizers of their known Delaunay polytopes are large.
- Is there a general analytical description of the Delaunay partition of A_n^r ?

VI. Voronoi Conjecture

Tilings

- A tiling (or tesselation) is a set of polytopes in \mathbb{R}^n which do not overlap (a packing) and cover \mathbb{R}^n without gaps (a covering). Those polytopes are called tiles (or cells).
- A tiling is face-face if any 2 tiles intersect in a face or \emptyset .
- A tiling is monohedral if all its tiles are congruent.
 A tile of monohedral tiling is called spacefiller.
- A tiling is isohedral if its symmetry group (all rigid motions of Rⁿ preserving tiling) is transitive on tiles.
 A tile of isohedral tiling is called stereotope.
- A parallelotope is a stereotope which can be moved to any other tile by pure translation (with no rotation).
- Voronoi polytope of any lattice is a parallelotope;
 Voronoi conjecture: and vice versa.

Comb. types of \leq 3-paralelotopes

All 2-parallelotopes are combinatorially equiv. to Voronoi 2-polytopes: centrally symmetric hexagons and rectangles.

1+2+5 with $n \leq 3$ are zonotopes but not 24-cell= $\mathcal{V}(D_4)$.

The Voronoi conjecture, 1908

A parallelotope is a polytope whose translation copies form a normal (face-to-face) partition of \mathbb{R}^n . Voronoi conjecture: every parallelotope is a linear image of the Dirichlet domain (i.e., Voronoi polytope) of a lattice.

- Fedorov, 1885: 1 + 2 + 5 parallelotopes with $n \le 3$ are Voronoi and zonotopes (projections of *n*-cube).
- Delone, 1929, 51 and Shtogrin, 1975, 52-nd, found all 52 4-dimensional parallelotopes; all are Voronoi.
 Deza and Grishukhin: 17 are zonotopes, one is the regular 24-cell {3,4,3} and remaining 34 are sums of 24-cell with non-zero zonotopal parallelotopes.
- Engel, 1998 by computer: all 179397 5-dimensional ones; all are Voronoi including 222 primitive ones.
- McMullen–Erdahl: OK for zonotopes: comb, arith. eqv.

The Voronoi conjecture: facet vectors

- Venkov, 1954, and McMullen, 1984: a convex polytope *P* is a parallelotope if and only if it holds:
 (i) *P* and each its facet are centrally symmetric and
 (ii) the projection of *P* along any (*n* 2)-face is either parallelogram, or a centrally symmetric hexagon.
- ▲ Let I be index-set of facets up to central symmetry.
 For $i \in I$, facet vector q_i is the one orthogonal to facet i.
- If 0 be the center of *P*, then it holds: $P(0) = \{x \in \mathbb{R}^n : -\frac{1}{2}q_i^T t_i \le q_i^T x \le \frac{1}{2}q_i^T t_i, i \in I\},\$ where t_i is lattice vector from 0 to the center of the parallelotope sharing with *P* the facet *i*.

• $t_i, i \in I$, generate a lattice L (as translation group). A parallelotope P(0) is the Voronoi polytope $\mathcal{V}(0)$ of L if and only if $t_i = q_i, i \in I$ (the relevant vectors).

The Voronoi conjecture: primitivity

- ▲ An *n*-parallelotope and its tiling are *k*-primitive if each *k*-face of *P* (and of the tiling) belongs exactly to n k + 1 parallelotopes of the tiling.
- Primitivity is 0-primitivity. Voronoi, 1908, proved his conjecture for primitive parallelotopes.
- The number of primitive *n*-parallelotopes is 1 for $1 \le n \le 3$ and $3, 222, \ge 2 \times 10^6$ for n = 4, 5, 6.
- *k*-primitivity implies (k + 1)-primitivity.
 Zhitomirskii, 1929, proved Voronoi conjecture for *k*-primitive parallelotopes with $k \le n 2$.
- **Any** parallelotope is (n-1)- and *n*-primitive.

VII. Crystallographic

structures

A generalization

• Given a lattice L, a crystallographic structure is a subset of \mathbb{R}^n (periodic structure) of the form

$$\mathcal{CS} = \bigcup_{i=0}^{m} (a_i + L).$$

- For example, if G is a Bravais group of \mathbb{R}^n and x a point, then the orbit Gx is a crystallographic structure.
- A stereotope is a polytope whose orbit under a space group form a normal (face-to-face) tiling of the space.

L-type theory, linear

- Fixing vectors a_i and varying lattice L (or quadratic form), one gets linear theory (L-types, perfect domains etc.) for such periodic structures.
- One can consider the Delaunay decomposition of CS and compute it with almost the same algorithms.
- Every Delaunay is circumscribed by an empty sphere. The condition that no points are inside the sphere, translates into linear inequalities.
- Many conjectures says that the best packings and coverings are not lattice ones. So, the hope is to choose well the a_i, do our classical polyhedral computation and get better packings or coverings than the lattice ones.

L-type theory, nonlinear

- Fix a lattice L (or quadratic form on \mathbb{R}^n) and vary a_i .
- *L*-types exist again in that context.
 They again partition the parameter space.
- But the obtained theory is no longer linear.
- The key for a combinatorial attack is to have the solution of the problem: among polynomial inequalities

 $f_i(x) \ge 0$ for $1 \le i \le, p$

find the non-redundant ones.

Project: use real algebraic geometry software for solving above problem and realize enumeration of *L*-types of stereotopes.