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I. General

setting
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Polytopes and their faces

A d-polytope: the convex hull of a finite subset of Rd.

A face of P is the set {x ∈ P : f(x) = 0} where f is
linear non-negative function on P .

A face of dimension i is called i-face; for i=0, 1, 2, d − 2, d − 1
it is called, respectively, vertex, edge, face, ridge and facet.
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Skeleton of polytope

The skeleton of polytope P is the graph G(P ) formed by
vertices, with two vertices adjacent if they form an edge.
d-polytopes P and P ′ are of the same combinatorial
type if G(P ) ≃ G(P ′).

The dual skeleton is the graph G∗(P ) formed by facets
with two facets adjacent if their intersection is a ridge.
(Poincaré) dual polytopes P and P ∗ on sphere Sd−1:
G∗(P ) = G(P ∗).

Steinitz’s theorem: a graph is the skeleton of a
3-polytope if and only if it is planar and 3-connected,
i.e., removing any two edges keep it connected.
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4-cube

Regular d-polytopes:
self-dual d-simplex G(αd) = Kd+1,
d-cube G(γd) = Hd = (K2)

d and
its dual d-cross-polytope G(βd) = K2d − dK2.
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Euler formula

f -vector of d-polytope: (f0, . . . , fd−1, fd = 1) where fj is the
number of i-faces. Euler characteristic equation for a map
on oriented (d − 1)-surface of genus g:

χ =
∑d−1

j=0(−1)jfj = 2(1 − g).
For a polyhedron (3-polytope on S2), it is f0 − f1 + f2 = 2.
p-vector: (p3, . . . ) where pi is number of i-gonal faces.
v-vector: (v3, . . . ) where vi is number of i-valent vertices.
So, f0 =

∑

i≥3 vi, f2 =
∑

i≥3 pi and 2f1 =
∑

i≥3 ivi =
∑

i≥3 ipi.

∑

i≥3

(6 − i)pi +
∑

i≥3

(3 − i)vi = 12.

A fullerene polyhedron has vi 6= 0 only for i = 3
and pi 6= 0 only for i = 5, 6. So, (6 − 5)p5 = p5 = 12.
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Definition of fullerene

A fullerene Fn is a simple (i.e., 3-valent) polyhedron
(putative carbon molecule) whose n vertices (carbon atoms)
are arranged in 12 pentagons and (n

2 − 10) hexagons.
The 3

2n edges correspond to carbon-carbon bonds.

Fn exist for all even n ≥ 20 except n = 22.

1, 1, 1, 2, 5 . . . , 1812, . . . 214127713, . . . isomers Fn, for n =
20, 24, 26, 28, 30 . . . , 60, . . . , 200, . . . .

Thurston,1998, implies: no. of Fn grows as n9.

C60(Ih), C80(Ih) are only icosahedral (i.e., with highest
symmetry Ih or I) fullerenes with n ≤ 80 vertices.

preferable fullerenes, Cn, satisfy isolated pentagon rule,
but Beavers et al, August 2006, produced buckyegg:
C84 (and Tb3N inside) with 2 adjacent pentagons.
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Examples

buckminsterfullerene C60(Ih)
truncated icosahedron,

soccer ball

F36(D6h)
elongated hexagonal barrel

F24(D6d)
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The range of fullerenes

Dodecahedron F20(Ih):
the smallest fullerene Graphite lattice (63) as F∞:

the “largest fullerene"
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Finite isometry groups
All finite groups of isometries of 3-space are classified. In
Schoenflies notations:

C1 is the trivial group

Cs is the group generated by a plane reflexion

Ci = {I3,−I3} is the inversion group

Cm is the group generated by a rotation of order m of
axis ∆

Cmv (≃ dihedral group) is the group formed by Cm and
m reflexion containing ∆

Cmh = Cm × Cs is the group generated by Cm and the
symmetry by the plane orthogonal to ∆

SN is the group of order N generated by an antirotation
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Finite isometry groups

Dm (≃ dihedral group) is the group formed of Cm and m
rotations of order 2 with axis orthogonal to ∆

Dmh is the group generated by Dm and a plane
symmetry orthogonal to ∆

Dmd is the group generated by Dm and m symmetry
planes containing ∆ and which does not contain axis of
order 2

D2h D2d
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Finite isometry groups

Ih = H3 ≃ Alt5 × C2 is the group of isometries of the
regular Dodecahedron

I ≃ Alt5 is the group of rotations of the regular
Dodecahedron

Oh = B3 is the group of isometries of the regular Cube

O ≃ Sym(4) is the group of rotations of the regular Cube

Td = A3 ≃ Sym(4) is the group of isometries of the
regular Tetrahedron

T ≃ Alt(4) is the group of rotations of the regular
Tetrahedron

Th = T ∪ −T

– p. 12/150



Point groups

(point group) Isom(P ) ⊂ Aut(G(P )) (combinatorial group)
Theorem (Mani, 1971)
Given a 3-connected planar graph G, there exist a
3-polytope P , whose group of isometries is isomorphic to
Aut(G) and G(P ) = G.
All groups for fullerenes (Fowler et al) are:

1. C1, Cs, Ci

2. C2, C2v, C2h, S4 and C3, C3v, C3h, S6

3. D2, D2h, D2d and D3, D3h, D3d

4. D5, D5h, D5d and D6, D6h, D6d

5. T , Td, Th and I, Ih
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Small fullerenes

24, D6d 26, D3h 28, D2 28, Td

30, D5h 30, C2v 30, D2v
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A C540
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What nature wants?

Fullerenes or their duals appear in Architecture and
nanoworld:

Biology: virus capsids and clathrine coated vesicles

Organic (i.e., carbon) Chemistry

also: (energy) minimizers in Thomson problem (for n
unit charged particles on sphere) and Skyrme problem
(for given baryonic number of nucleons);
maximizers, in Tammes problem, of minimum distance
between n points on sphere

Which, among simple polyhedra with given number of
faces, are the “best” approximation of sphere?

Conjecture: FULLERENES
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Graver’s superfullerenes

Almost all optimizers for Thomson and Tammes
problems, in the range 25 ≤ n ≤ 125 are fullerenes.

For n > 125, appear 7-gonal faces;
for n > 300: almost always.

However, J.Graver, 2005: in all large optimizers,
the 5- and 7-gonal faces occurs in 12 distinct clusters,
corresponding to a unique underlying fullerene.

– p. 17/150



Skyrmions and fullerenes

Conjecture (Battye-Sutcliffe, 1997):
any minimal energy Skyrmion (baryonic density isosurface
for single soliton solution) with baryonic number (the
number of nucleons) B ≥ 7 is a fullerene F4B−8.

Conjecture (true for B < 107; open from (b, a) = (1, 4)):
there exist icosahedral fullerene as a minimal energy
Skyrmion for any B = 5(a2 + ab + b2) + 2 with integers
0 ≤ b < a, gcd(a, b) = 1 (not any icosahedral Skyrmion has
minimal energy).

Skyrme model (1962) is a Lagrangian approximating QCD
(a gauge theory based on SU(3) group). Skyrmions are
special topological solitons used to model baryons.
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Isoperimetric problem for polyhedra

Lhuilier 1782, Steiner 1842, Lindelöf 1869, Steinitz 1927,
Goldberg 1933, Fejes Tóth 1948, Pólya 1954

Polyhedron of greatest volume V with a given number
of faces and a given surface S?

Polyhedron of least volume with a given number of
faces circumscribed around the unit sphere?

Maximize Isoperimetric Quotient for solids.
Schwarz,1890:
IQ = 36π V 2

S3 ≤ 1 (with equality only for sphere)

In Biology: the ratio V
S

(= r
3 for spherical animal of radius

r) affects heat gain/loss, nutritient/gas transport into
body cells and organism support on its legs.
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Isoperimetric problem for polyhedra

polyhedron IQ(P ) upper bound
Tetrahedron π

6
√

3
≃ 0.302 π

6
√

3

Cube π
6 ≃ 0.524 π

6

Octahedron π

3
√

3
≃ 0.605 ≃ 0.637

Dodecahedron πτ7/2

3.55/4
≃ 0.755 πτ7/2

3.55/4

Icosahedron πτ4

15
√

3
≃ 0.829 ≃ 0.851

IQ of Platonic solids
(τ = 1+

√
5

2 : golden mean)

Conjecture (Steiner 1842):
Each of the 5 Platonic solids has maximal IQ among all
isomorphic to it (i.e., with same skeleton) polyhedra (still
open for the Icosahedron)
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Classical isoperimetric inequality

If a domain D ⊂ En has volume V and bounded by
hypersurface of (n − 1)-dimensional area A, then
Lyusternik, 1935:

IQ(D) =
nnωnV n−1

An
≤ 1

with equality only for unit sphere Sn; its volume is

ωn = 2π
n
2

nΓ(n
2
) , where Euler’s Gamma function is

Γ(
n

2
) =

{

(n
2 )! for even n

√
π (n−2)!!

2
n−2

2

for odd n
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Five Platonic solids
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Goldberg Conjecture

20 faces: IQ(Icosahedron) < IQ(F36) ≃ 0.848

Conjecture (Goldberg 1933):
The polyhedron with m ≥ 12 facets with maximal IQ is a
fullerene (called “medial polyhedron” by Goldberg)

polyhedron IQ(P ) upper bound

Dodecahedron F20(Ih) πτ7/2

3.55/4
≃ 0.755 πτ7/2

3.55/4

Truncated icosahedron C60(Ih) ≃ 0.9058 ≃ 0.9065

Chamfered dodecahed. C80(Ih) ≃ 0.928 ≃ 0.929

Sphere 1 1
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II. Icosahedral

fullerenes
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Icosahedral fullerenes
Call icosahedral any fullerene with symmetry Ih or I

All icosahedral fullerenes are preferable, except F20(Ih)

n = 20T , where T = a2 + ab + b2 (triangulation number)
with 0 ≤ b ≤ a.

Ih for a = b 6= 0 or b = 0 (extended icosahedral group);
I for 0<b<a (proper icos. group); T=7,13,21,31,43,57...

C60(Ih)=(1, 1)-dodecahedron
truncated icosahedron

C80(Ih)=(2, 0)-dodecahedron
chamfered dodecahedron
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C60(Ih): (1, 1)-
dodecahedron

C80(Ih): (2, 0)-
dodecahedron

C140(I): (2, 1)-
dodecahedron

From 1998, C80(Ih) appeared in Organic Chemistry in some
endohedral derivatives as La2@C80, etc.

– p. 26/150



Icosadeltahedra

Call icosadeltahedron the dual of an icosahedral fullerene
C∗

20T (Ih) or C∗
20T (I)

Geodesic domes: B.Fuller, patent 1954

Capsids of viruses: Caspar and Klug, Nobel prize 1982
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Dual C∗
60(Ih), (a, b) = (1, 1)

pentakis-dodecahedron
GRAVIATION (Esher 1952)
omnicapped dodecahedron
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Icosadeltahedra in Architecture

(a, b) Fullerene Geodesic dome

(1, 0) F ∗

20
(Ih) One of Salvador Dali houses

(1, 1) C∗

60
(Ih) Artic Institute, Baffin Island

(3, 0) C∗

180
(Ih) Bachelor officers quarters, US Air Force, Korea

(2, 2) C∗

240
(Ih) U.S.S. Leyte

(4, 0) C∗

320
(Ih) Geodesic Sphere, Mt Washington, New Hampshire

(5, 0) C∗

500
(Ih) US pavilion, Kabul Afghanistan

(6, 0) C∗

720
(Ih) Radome, Artic dEW

(8, 8) C∗

3840
(Ih) Lawrence, Long Island

(16, 0) C∗

5120
(Ih) US pavilion, Expo 67, Montreal

(18, 0) C∗

6480
(Ih) Géode du Musée des Sciences, La Villete, Paris

(18, 0) C∗

6480
(Ih) Union Tank Car, Baton Rouge, Louisiana

b = 0 Alternate, b = a Triacon and a + b Frequency (distance
of two 5-valent neighbors) are Buckminster Fullers’s terms
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Geodesic Domes

US pavilion, World Expo
1967, Montreal

Spaceship Earth, Disney
World’s Epcot, Florida
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IcosadeltahedraC∗
n with a = 2

C∗
80(Ih), (a, b)=(2, 0) C∗

140(I), (a, b)=(2, 1)

Icosadeltahedra C∗
20×4t(Ih) (i.e., (a, b) = (2t, 0)) with t ≤ 4 are

used as schemes for directional sampling in Diffusion MRI
(Magnetic Resonance Imaging) for scanning brain space
more uniformly along many directions (so, avoiding
sampling direction biases).
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C60(Ih) in leather

Telstar ball, official match ball
for 1970 and 1974 FIFA World Cup

C60(Ih) is also the state molecule of Texas.
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The leapfrog ofC60(Ih)

C∗
180(Ih), (a, b) = (3, 0) C∗

180(Ih) as omnicapped
buckminsterfullerene C60
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Triangulations, spherical wavelets

Dual 4-chamfered cube
(a, b) = (24 = 16, 0), Oh

Dual 4-cham. dodecahedron
C∗

5120, (a, b) = (24 = 16, 0), Ih

Used in Computer Graphics and Topography of Earth
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III. Fullerenes in

Chemistry and Biology
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Fullerenes in Chemistry

Carbon C and, possibly, silicium Si are only 4-valent
elements producing homoatomic long stable chains or nets

Graphite sheet: bi-lattice (63), Voronoi partition of the
hexagonal lattice (A2), “infinite fullerene”

Diamond packing: bi-lattice D-complex, α3-centering of
the lattice f.c.c.=A3

Fullerenes: 1985 (Kroto, Curl, Smalley): Cayley A5,
C60(Ih), tr. icosahedon, football; Nobel prize 1996
but Ozawa (in japanese): 1984. “Cheap” C60: 1990.
1991 (Iijima): nanotubes (coaxial cylinders).
Also isolated chemically by now: C70, C76, C78, C82, C84.
If > 100 carbon atoms, they go in concentric layers;
if < 20, cage opens for high temperature.
Full. alloys, stereo org. chemistry, carbon: semi-metal.
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Allotropes of carbon
Diamond: cryst.tetrahedral, electro-isolating, hard,
transparent. Rarely > 50 carats, unique > 800ct:
Cullinan 3106ct = 621g. Kuchner: diamond planets?

Hexagonal diamond (lonsdaleite): cryst.hex., very rare;
1967, in shock-fused graphite from several meteorites

ANDR (aggregated diamond nanorods): 2005,
Bayreuth University; hardest known substance

Graphite: cryst.hexagonal, soft, opaque, el. conducting
2004: Graphene , 2dim. carbon, most expensive in 2008

Amorphous carbon (no long-range pattern): synthetic;
coal and soot are almost such

Fullerenes: 1985, spherical; only soluble carbon form

Nanotubes: 1991, cylindric, few nm wide, upto few mm;
nanobudes: 2007, nanotubes combined with fullerenes
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Allotropes of carbon: pictures
a) Diamond b) Graphite c) Lonsdaleite d) C60 (e) C540 f) C70

g) Amorphous carbon h) single-walled carbon nanotube
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Other allotropes of carbon
Carbon nanofoam: 1997, clusters of about 4000 atoms
linked in graphite-like sheets with some 7-gons
(negatively curved), ferromagnetic

Glassy carbon: 1967; carbyne: linear Acetilic Carbon

? White graphite (chaoite): cryst.hexagonal; 1968, in
shock-fused graphite from Ries crater, Bavaria

? Carbon(VI); ? metallic carbon; ?
? Prismane C8, bicapped Prism3

graphite: diamond:
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Carbon and Anthropic Principle

Nucleus of lightest elements H, He, Li, Be (and Boron?)
were produced in seconds after Big Bang, in part, by
scenario: Deuterium H2, H3, He3, He4, H, Li7.
If week nuclear force was slightly stonger, 100%
hydrogen Univers; if weaker, 100% helium Univers.

Billion years later, by atom fusion under high t0 in stars

3He4 → C12

(12 nucleons, i.e., protons/neutrons), then Ni, O, Fe etc.

"Happy coincidence": energy level of C ≃ the energies
of 3 He; so, reaction was possible/probable.

Without carbon, no other heavy elements and life could
not appear. C: 18.5% of human (0.03% Universe) weight.
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LaC82

first Endohedral Fullerene
compound

C10Ph9OH
Exohedral Fullerene

compound (first with a single
hydroxy group attached)

– p. 40/150



First non-preferable fullerene compound

Tb3N@C84 with a molecule of
triterbium nitride inside

Beavers et al, 2006: above "buckyegg".
Unique pair of adjacent pentagons makes the pointy end.
One Tb atom is nestled within the fold of this pair.
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Terrones quasicrystalline cluster

In silico: from C60 and F40(Td); cf. 2 atoms in quasicrystals
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Onion-like metallic clusters

Palladium icosahedral 5-cluster
Pd561L60(O2)180(OAc)180

α Outer shell Total # of atoms # Metallic cluster

1 C∗
20(Ih) 13 [Au13(PMe2Ph)10Cl2]

3+

2 RhomDode∗80(Oh) 55 Au55(PPh3)12Cl6

4 RhomDode∗320(Oh) 309 Pt309(Phen36O30±10)

5 C∗
500(Ih) 561 Pd561L60(O2)180(OAc)180

Icosahedral and cuboctahedral metallic clusters
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Nanotubes and Nanotechnology

Helical graphite Deformed graphite tube
Nested tubes (concentric cylinders) of rolled graphite;

use(?): for composites and “nanowires”
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Applications of nanotubes/fullerenes

Fullerenes are heat-resistant and dissolve at room t0. There
are thousands of patents for their commercial applications
Main areas of applications (but still too expensive) are:

El. conductivity of alcali-doped C60: insulator K2C60 but
superconductors K3C60 at 18K and Rb3C60 at 30K
(however, it is still too low transition Tc)

Catalists for hydrocarbon upgrading (of heavy oils,
methane into higher HC, termal stability of fuels etc.)

Pharmaceceuticals: protease inhibitor since derivatives
of C60 are highly hydrophobic and antioxydant
(they soak cell-damaging free radicals)

Superstrong materials, nanowires?

Now/soon: buckyfilms, sharper scanning microscope
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Nanotubes/fullerenes: hottest sci. topics

Ranking (by Hirsch-Banks h-b index) of most popular in
2006 scientific fields in Physics:
Carbon nanotubes 12.85,
nanowires 8.75,
quantum dots 7.84,
fullerenes 7.78,
giant magnetoresistance 6.82,
M-theory 6.58, quantum computation 5.21, . . .

Chem. compounds ranking: C60 5.2, gallium nitride 2.1, . . .

h-index of a topic, compound or a scholar is the highest
number T of published articles on this topic, compound or
by this scholar that have each received ≥ T citations.
h-b index of a topic or compound is h-index divided by the
number of years that papers on it have been published.
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Chemical context

Crystals: from basic units by symm. operations, incl.
translations, excl. order 5 rotations (“cryst. restriction”).
Units: from few (inorganic) to thousands (proteins).

Other very symmetric mineral structures: quasicrystals,
fullerenes and like, icosahedral packings (no
translations but rotations of order 5).

Fullerene-type polyhedral structures (polyhedra,
nanotubes, cones, saddles, . . . ) were first observed
with carbon. But also inorganic ones were considered:
boron nitrides, tungsten, disulphide, allumosilicates
and, possibly, fluorides and chlorides.
May 2006, Wang-Zeng-al.: first metal hollow cages
Aun = F ∗

2n−4 (16 ≤ n ≤ 18). F ∗
28 is the smallest; the gold

clusters are flat if n < 16 and compact (solid) if n > 18.

– p. 47/150



Stability of fullerenes

Stability of a molecule: minimal total energy, i.e.,

I-energy and

the strain in the 6-system.

Hückel theory of I-electronic structure: every eigenvalue
λ of the adjacency matrix of the graph corresponds to an
orbital of energy α + λβ, where
α is the Coulomb parameter (same for all sites) and
β is the resonance parameter (same for all bonds).
The best I-structure: same number of positive and
negative eigenvalues.
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Fullerene Kekule structure
Perfect matching (or 1-factor) of a graph is a set of
disjoint edges covering all vertices. A Kekule structure
of an organic compound is a perfect matching of its
carbon skeleton, showing the locations of double bonds.

A set H of disjoint 6-gons of a fullerene F is a resonant
pattern if, for a perfect matching M of F , any 6-gon in H
is M -alternating (its edges are alternatively in and off M ).

Fries number of F is maximal number of M -alternating
hexagons over all perfect matchings M ;
Clar number is maximal size of its resonant pattern.

A fullerene is k-resonant if any i ≤ k disjoint hexagons
form a resonant pattern. Any fullerene is 1-resonant;
conjecture : any preferable fulerene is 2-resonant. Zhang
et al, 2007: all 3-resonant fullerenes: C60(Ih) and a F4m

for m = 5, 6, 7, 8, 9, 9, 10, 12. All 9 are k-resonant for k ≥ 3.
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Life fractions
life: DNA and RNA (cells)

1/2-life: DNA or RNA (cell parasites: viruses)

“naked” RNA, no protein (satellite viruses, viroids)

DNA, no protein (plasmids, nanotech, “junk” DNA, ...)

no life: no DNA, nor RNA (only proteins, incl. prions)

Atom DNA Cryo-EM Prion Virus capsides

size ≃ 0.25 ≃ 2 ≃ 5 11 20 − 50 − 100 − 400

nm SV40, HIV, Mimi

Viruses: 4th domain (Acytota)?
But crystals also self-assembly spontaneously.

Viral eukaryogenesis hypothesis (Bell, 2001).
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Icosahedral viruses

Virus: virion, then (rarely) cell parasite.

Watson and Crick, 1956:
"viruses are either spheres or rods". In fact, all, except
most complex (as brick-like pox virus) and enveloped
(as conic HIV) are helical or (≈ 1

2 of all) icosahedral.

Virion: protein shell (capsid) enclosing genome
(RNA or DNA) with 3 − 911 protein-coding genes.

Shere-like capsid has 60T protein subunits, but EM
resolves only clusters (capsomers), incl. 12 pentamers
(5 bonds) and 6-mers; plus, sometimes, 2- and 3-mers.

Bonds are flexible: ≃ 50 deviation from mean direction.
Self-assembly: slight but regular changes in bonding.
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Caspar- Klug (quasi-equivalence) principle: virion
minimizes by organizing capsomers in min. number T
of locations with non-eqv. bonding. Also, icosah. group
generates max. enclosed volume for given subunit size.
But origin, termodynamics and kinetics of this
self-assembly is unclear. Modern computers cannot
evaluate capsid free energy by all-atom simulations.)

So, capsomers are 10T + 2 vertices of icosadeltahedron
C∗

20T , T = a2 + ab + b2 (triangulation number). It is
symmetry of capsid , not general shape (with spikes).

Lower pseudo-equivalence when 2-, 3-mers appear
and/or different protein type in different locations.

Hippocrates: disease = icosahedra (water) body excess
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Capsids of icosahedral viruses

(a, b) T = a2 + ab + b2 Fullerene Examples of viruses

(1, 0) 1 F ∗

20
(Ih) B19 parvovirus, cowpea mosaic virus

(1, 1) 3 C∗

60
(Ih) picornavirus, turnip yellow mosaic virus

(2, 0) 4 C∗

80
(Ih) human hepatitis B, Semliki Forest virus

(2, 1) 7l C∗

140
(I)laevo HK97, rabbit papilloma virus, Λ-like viruses

(1, 2) 7d C∗

140
(I)dextro polyoma (human wart) virus, SV40

(3, 1) 13l C∗

260
(I)laevo rotavirus

(1, 3) 13d C∗

260
(I)dextro infectious bursal disease virus

(4, 0) 16 C∗

320
(Ih) herpes virus, varicella

(5, 0) 25 C∗

500
(Ih) adenovirus, phage PRD1

(3, 3) 27 C∗

540
(I)h pseudomonas phage phiKZ

(6, 0) 36 C∗

720
(Ih) infectious canine hepatitis virus, HTLV1

(7, 7) 147 C∗

2940
(Ih) Chilo iridescent iridovirus (outer shell)

(7, 8) 169d C∗

3380
(I)dextro Algal chlorella virus PBCV1 (outer shell)

(7, 10) 219d? C∗

4380
(I) Algal virus PpV01
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Examples

Satellite, T = 1, of TMV,
helical Tobacco Mosaic virus

1st discovered (Ivanovski,
1892), 1st seen (1930, EM)

Foot-and-Mouth virus,
T = 3
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Viruses with (pseudo)T = 3

Poliovirus
(polyomyelitis)

Human Rhinovirus
(cold)
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Viruses with T = 4

Human hepatitis B Semliki Forest virus
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More T = a2 viruses

Sindbis virus,
T = 4

Herpes virus,
T = 16
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Human and simian papilloma viruses

Polyoma virus,
T = 7d

Simian virus 40,
T = 7d
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Viruses with T = 13

Rice dwarf virus Bluetongue virus
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Viruses with T = 25

PRD1 virus Adenovirus (with its spikes)
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More Ih-viruses

Pseudomonas phage phiKZ,
T = 27

HTLV1 virus,
T = 36
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Special viruses

Archeal virus STIV, T = 31
Algal chlorella virus PBCV1
(4th: ≃ 331.000 bp), T = 169

Sericesthis iridescent virus, T = 72 + 49 + 72 = 147?

Tipula iridescent virus, T = 122 + 12 + 12 = 157?
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HIV conic fullerene

Capsid core Shape (spikes): T ≃ 71?
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Mimivirus and other giants

Largest (400nm), >150 (bacteria Micoplasma genitalium),
1
30 of its host Acanthamoeba Polyphaga (record: 1

10).
Largest genome: 1.181.404 bp; 911 protein-coding genes
>182 (bacterium Carsonella ruddii). Icosahedral: T = 1179

Giant DNA viruses (giruses): if >300 genes, >250nm.
Ex-"cells-parasiting cells" as smallest bacteria do now?
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Viruses: big picture
1mm3 of seawater has ≃ 10 million viruses; all seagoing
viruses ≃ 270 million tons (more 20 x weight of whales).

Main defense of multi-cellulars, sexual reproduction, is
not effective (in cost, risk, speed) but arising mutations
give chances against viruses. Wiped out: <10 viruses.

Origin: ancestors or vestiges of cells, or gene mutation.
Or evolved in prebiotic “RNA world" together with
cellular forms from self-replicating molecules?

Viral eukaryogenesis hypothesis (Bell, 2001):
nucleus of eukaryotic cell evolved from endosymbiosis
event: a girus took control of a micoplasma (i.e. without
wall) bacterial or archeal cell but, instead of replicating
and destroying it, became its ”nucleus”.

5-8 % of human genome: endogeneous retroviruses; In
November 2006, Phoenix, 5 Mya old, was resurrected.
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IV. Some

fullerene-like

3-valent maps
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Useful fullerene-like3-valent maps

Mathematical Chemistry use following fullerene-like maps:

Polyhedra (p5, p6, pn) for n = 4, 7 or 8 (vmin = 14, 30, 34)
Aulonia hexagona (E. Haeckel 1887): plankton skeleton

Azulenoids (p5, p7) on torus g = 1; so, p5 = p7

azulen is an isomer C10H8 of naftalen

(p5, p6, p7) = (12, 142, 12),
v = 432, D6d
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Schwarzits
Schwarzits (p6, p7, p8) on minimal surfaces of constant
negative curvature (g ≥ 3). We consider case g = 3:

Schwarz P -surface Schwarz D-surface

Take a 3-valent map of genus 3 and cut it along zigzags

and paste it to form D- or P -surface.

One needs 3 non-intersecting zigzags. For example,
Klein regular map 73 has 5 types of such triples; D56.

– p. 68/150



(6, 7)-surfaces

(1, 1)
D168: putative
carbon, 1992,

(Vanderbilt-Tersoff)
(0, 2) (1, 2)

(p6, p7 = 24), v = 2p6 + 56 = 56(p2 + pq + q2)

Unit cell of (1, 0) has p6 = 0, v = 56: Klein regular map (73).
D56, D168 and (6, 7)-surfaces are analogs of F20(Ih), F60(Ih)

and icosahedral fullerenes.
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(6, 8)-surfaces

(1, 1) (0, 2)
P192, p6 = 80

(1, 2)

(p6, p8 = 12), v = 2p6 + 32 = 48(p2 + pq + q2)
Starting with (1, 0): P48 with p6 = 8

while unit cell with p6 = 0 is P32 - Dyck regular map (83)
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More (6, 8)-surfaces

(0, 2)
v = 120, p6 = 44

(1, 2)

(p6, p8 = 12), v = 2p6 + 32 = 30(p2 + pq + q2)

Unit cell of p6 = 0: P32 - Dyck regular map (83)
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Polycycles

A finite (p, q)-polycycle is a plane 2-connected finite graph,
such that :

all interior faces are (combinatorial) p-gons,

all interior vertices are of degree q,

all boundary vertices are of degree in [2, q].

a (5, 3)-polycycle
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Examples of(p, 3)-polycycles

p = 3 : 33, 33 − v, 33 − e;

p = 4 : 43, 43 − v, 43 − e, and
P2 × A with A = Pn≥1, PN, PZ

Continuum for any p ≥ 5.
But 39 proper (5, 3)-polycycles,
i.e., partial subgraphs of Dodecahedron

p = 6: polyhexes=benzenoids

Theorem
(i) Planar graphs admit at most one realization as
(p, 3)-polycycle
(ii) any unproper (p, 3)-polycycle is a (p, 3)-helicene
(homomorphism into the plane tiling {p3} by regular p-gons)
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Icosahedral fulleroids (with Delgado)

3-valent polyhedra with p = (p5, pn>6) and icosahedral
symmetry (I or Ih); so, v = 20 + 2pn(n − 5) vertices.

face orbit size 60 30 20 12

number of orbits any ≤ 1 ≤ 1 1

face degrees 5, n any 3t 2t 5t

An,k : (p5, pn) = (12 + 60k, 60k
n−6) with k ≥ 1, n > 6,

Bn,k : (p5, pn) = (60k, 125k−1
n−6 ) with k ≥ 1, n = 5t > 5.

Also: infinite series for n = 7 generalizing A7,1b and n = 8;
obtained from (2k + 1, 0)-dodecahedron by decorations
(partial operations T1 and T2, respectively).

Jendrol-Trenkler (2001): for any integers n ≥ 8 and m ≥ 1,
there exists an I(5, n)-fulleroid with pn = 60m.
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Decoration operations producing5-gons

Triacon T1 Triacon T2 Triacon T3

Pentacon P

– p. 75/150



I-fulleroids

p5 n; pn v # of Sym

A7,1 72 7, 60 260 2 I

A8,1 72 8, 30 200 1 Ih

A9,1 72 9, 20 180 1 Ih

B10,1 60 10, 12 140 1 Ih

A11,5 312 11, 60 740 ?

A12,2 132 12, 20 300 −
A12,3 192 12, 30 440 1 Ih

A13,7 432 13, 60 980 ?

A14,4 252 14, 30 560 1 Ih

B15,2 120 15, 12 260 1 Ih

Above (5, n)-spheres: unique for their p-vector (p5, pn), n > 7
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1st smallest icosahedral(5, 7)-spheres

F5,7(I)a = P (C140(I)); v = 260

Dress-Brinkmann (1996) 1st Phantasmagorical Fulleroid
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2nd smallest icosahedral(5, 7)-spheres

F5,7(I)b = T1(C180(Ih)); v = 260

Dress-Brinkmann (1996) 2nd Phantasmagorical Fulleroid
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The smallest icosahedral(5, 8)-sphere

F5,8(Ih) = P (C80(Ih)); v = 200
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The smallest icosahedral(5, 9)-sphere

F5,9(Ih) = P (C60(Ih)); v = 180
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The smallest icosahedral(5, 10)-sphere

F5,10(Ih) = T1(C60(Ih)); v = 140
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The smallest icosahedral(5, 12)-sphere

F5,12(Ih) = T3(C80(Ih)); v = 440
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The smallest icosahedral(5, 14)-sphere

F5,14(Ih) = P (F5,12(Ih)); v = 560
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The smallest icosahedral(5, 15)-sphere

F5,15(Ih) = T2(C60(Ih)); v = 260
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G-fulleroids

G-fulleroid: cubic polyhedron with p = (p5, pn) and
symmetry group G; so, pn = p5−12

n−6 .

Fowler et al., 1993: G-fulleroids with n = 6 (fullerenes)
exist for 28 groups G.

Kardos, 2007: G-fulleroids with n = 7 exists for 36
groups G; smallest for G = Ih has 500 vertices.
There are infinity of G-fulleroids for all n ≥ 7 if and only if
G is a subgroup of Ih; there are 22 types of such groups.

Dress-Brinkmann, 1986: there are 2 smallest
I-fulleroids with n = 7; they have 260 vertices.

D-Delgado, 2000: 2 infinite series of I-fulleroids and
smallest ones for n = 8, 10, 12, 14, 15.

Jendrol-Trenkler, 2001: I-fulleroids for all n ≥ 8.
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All seven2-isohedral (5, n)-planes

A (5, n)-plane is a 3-valent
plane tiling by 5- and n-
gons.
A plane tiling is 2-
homohedral if its faces
form 2 orbits under group
of combinatorial automor-
phisms Aut.
It is 2-isohedral if, more-
over, its symmetry group is
isomorphic to Aut.
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V. d-dimensional

fullerenes (with Shtogrin)
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d-fullerenes

(d − 1)-dim. simple (d-valent) manifold (loc. homeomorphic
to R

d−1) compact connected, any 2-face is 5- or 6-gon.
So, any i-face, 3 ≤ i ≤ d, is an polytopal i-fullerene.
So, d = 2, 3, 4 or 5 only since (Kalai, 1990) any 5-polytope
has a 3- or 4-gonal 2-face.

All finite 3-fullerenes

∞: plane 3- and space 4-fullerenes

4 constructions of finite 4-fullerenes (all from 120-cell):
A (tubes of 120-cells) and B (coronas)
Inflation-decoration method (construction C, D)

Quotient fullerenes; polyhexes

5-fullerenes from tiling of H4 by 120-cell
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All finite 3-fullerenes

Euler formula χ = v − e + p = p5

2 ≥ 0.

But χ =

{

2(1 − g) if oriented
2 − g if not

Any 2-manifold is homeomorphic to S2 with g (genus)
handles (cyl.) if oriented or cross-caps (Möbius) if not.

g 0 1(or.) 2(not or.) 1(not or.)

surface S2 T 2 K2 P 2

p5 12 0 0 6

p6 ≥ 0, 6= 1 ≥ 7 ≥ 9 ≥ 0, 6= 1, 2

3-fullerene usual sph. polyhex polyhex projective
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Smallest non-spherical finite3-fullerenes

Toric fullerene
Klein bottle

fullerene projective fullerene
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Non-spherical finite3-fullerenes

Projective fullerenes are antipodal quotients of centrally
symmetric spherical fullerenes, i.e. with symmetry Ci,
C2h, D2h, D6h, D3d, D5d, Th, Ih. So, v ≡ 0 (mod 4).
Smallest CS fullerenes F20(Ih), F32(D3d), F36(D6h)

Toroidal fullerenes have p5 = 0. They are described by
Negami in terms of 3 parameters.

Klein bottle fullerenes have p5 = 0. They are obtained
as quotient of toroidal ones by a fixed-point free
involution reversing the orientation.
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Plane fullerenes (infinite3-fullerenes)

Plane fullerene: a 3-valent tiling of E2 by (combinatorial)
5- and 6-gons.

If p5 = 0, then it is the graphite {63} = F∞ = 63.

Theorem: plane fullerenes have p5 ≤ 6 and p6 = ∞.

A.D. Alexandrov (1958): any metric on E2 of
non-negative curvature can be realized as a metric of
convex surface on E3.
Consider plane metric such that all faces became
regular in it. Its curvature is 0 on all interior points
(faces, edges) and ≥ 0 on vertices.
A convex surface is at most half S2.
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Space fullerenes (infinite4-fullerene)
4 Frank-Kasper polyhedra (isolated-hexagon
fullerenes): F20(Ih), F24(D6d), F26(D3h), F28(Td)

FK space fullerene: a 4-valent 3-periodic tiling of E3

by them; space fullerene: such tiling by any fullerenes.

FK space fullerenes occur in:
tetrahedrally close-packed phases of metallic alloys.
Clathrates (compounds with 1 component, atomic or
molecular, enclosed in framework of another), incl.
Clathrate hydrates, where cells are solutes cavities,
vertices are H2O, edes are hydrogen bonds;
Zeolites (hydrated microporous aluminosilicate
minerals), where vertices are tetrahedra SiO4 or
SiAlO4, cells are H2O, edges are oxygen bridges.
Soap froths (foams, liquid crystals).
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24 known primary FK space fullerenes
t.c.p. clathrate, exp. alloy sp. group f F20:F24:F26:F28 N

A15 type I, Cr3Si Pm3n 13.50 1, 3, 0, 0 8

C15 type II, MgCu2 Fd3m 13.(3) 2, 0, 0, 1 24

C14 type V, MgZn2 P63/mmc 13.(3) 2, 0, 0, 1 12

Z type IV, Zr4Al3 P6/mmm 13.43 3, 2, 2, 0 7

σ type III, Cr46Fe54 P42/mnm 13.47 5, 8, 2, 0 30

H complex Cmmm 13.47 5, 8, 2, 0 30

K complex Pmmm 13.46 14, 21,6,0 82

F complex P6/mmm 13.46 9, 13, 4, 0 52

J complex Pmmm 13.45 4, 5, 2, 0 22

ν Mn81.5Si8.5 Immm 13.44 37, 40, 10, 6 186

δ MoNi P212121 13.43 6, 5, 2, 1 56

P Mo42Cr18Ni40 Pbnm 13.43 6, 5, 2, 1 56
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24 known primary FK space fullerenes

t.c.p. exp. alloy sp. group f F20:F24:F26:F28 N

K Mn77Fe4Si19 C2 13.42 25,19, 4, 7 220

R Mo31Co51Cr18 R3 13.40 27, 12, 6, 8 159

µ W6Fe7 R3m 13.38 7, 2, 2, 2 39

– K7Cs6 P63/mmc 13.38 7, 2, 2, 2 26

pσ V6(Fe, Si)7 Pbam 13.38 7, 2, 2, 2 26

M Nb48Ni39Al13 Pnam 13.38 7, 2, 2, 2 52

C V2(Co, Si)3 C2/m 13.36 15, 2, 2, 6 50

I V i41Ni36Si23 Cc 13.37 11, 2, 2, 4 228

T Mg32(Zn, Al)49 Im3 13.36 49, 6, 6, 20 162

SM Mg32(Zn, Al)49 Pm3n 13.36 49, 9, 0, 23 162

X Mn45Co40Si15 Pnmm 13.35 23, 2, 2, 10 74

– Mg4Zn7 C2/m 13.35 35, 2, 2, 16 110
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FK space fullereneA15 (β-W phase)
Gravicenters of cells F20 (atoms Si in Cr3Si) form the bcc
network A∗

3. Unique with its fractional composition (1, 3, 0, 0).
Oceanic methane hydrate (with type I, i.e., A15) contains
500-2500 Gt carbon; cf. ∼230 for other natural gas sources.
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FK space fullereneC15

Cubic N=24; gravicenters of cells F28 (atoms Mg in MgCu2)
form diamond network (centered A3). Cf. MgZn2 forming
hexagonal N=12 variant C14 of diamond: lonsdaleite found
in meteorites, 2nd in a continuum of (2, 0, 0, 1)-structures.
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FK space fullereneZ

It is also not determined by its fract. composition (3, 2, 2, 0).
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Computer enumeration
Dutour-Deza-Delgado, 2008, found 84 FK structures (incl.
known: 10 and 3 stackings) with N ≤ 20 fullerenes in
reduced (i.e. by a Biberbach group) fundamental domain.

# 20 # 24 # 26 # 28 fraction N(nr.of) n(known structure)

4 5 2 0 known 11(1) not J-complex

8 0 0 4 known 12(1) 24(C36)

7 2 2 2 known 13(5) 26(−), 26(pσ), 39(µ), not M

6 6 0 2 new 14(3) -

6 5 2 1 known 14(6) 56(δ), not P

6 4 4 0 known 14(4) 7(Z)

7 4 2 2 conterexp. 15(1) -

5 8 2 0 known 15(2) 30(σ), 30(H-complex)

9 2 2 3 new 16(1) -

6 6 4 0 conterexp. 16(1) -

4 12 0 0 known 16(1) 8(A15)

12 0 0 6 known 18(4) 12(C14),24(C15),36(6-layer),54(9-layer)
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Conterexamples to2 old conjectures
Any 4-vector, say, (x20, x24, x26, x28), is a linear combination
a0(1, 0, 0, 0)+a1(1, 3, 0, 0)A15+a2(3, 2, 2, 0) Z+a3(2, 0, 0, 1)C15

with a0 = x20- x24

3 -7x26

6 -2x28 and a1= x24−x26

3 , a2=x26

2 , a3=x28.
Yarmolyuk-Krypyakevich, 1974: a0 = 0 for FK fractions.
So, 5.1≤ q ≤5.(1), 13.(3)≤ f ≤13.5; equalities iff C15, A15

Conterexamples: (7, 4, 2, 2), (6, 6, 4, 0), (6, 8, 4, 0) (below).
Mean face-sizes q: ≈ 5.1089, 5.(1)(A15), ≈ 5.1148. Mean
numbers of faces per cell f : 13.4(6), 13.5(A15), 13.(5)

disproving Nelson-Spaepen, 1989: q ≤ 5.(1), f ≤ 13.5.
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Frank-Kasper polyhedra and A15

Frank-Kasper polyhedra F20, F24, F26, F28 with maximal
symmetry Ih, D6d, D3h, Td, respectively, are Voronoi cells
surrounding atoms of a FK phase. Their duals: 12,14,15,18
coordination polyhedra. FK phase cells are almost regular
tetrahedra; their edges, sharing 6 or 4 tetrahedra, are - or +
disclination lines (defects) of local icosahedral order.
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Special space fullerenesA15 and C15

Those extremal space fullerenes A15, C15 correspond to

clathrate hydrates of type I,II;

zeolite topologies MEP, MTN;

clathrasils Melanophlogite, Dodecasil 3C;

metallic alloys Cr3Si (or β-tungsten W3O), MgCu2.

Their unit cells have, respectively, 46, 136 vertices and
8 (2 F20 and 6 F24), 24 (16 F20 and 8 F28) cells.

24 known FK structures have mean number f of faces per
cell (mean coordination number) in [13.(3)(C15), 13.5(A15)]

and their mean face-size is within [5 + 1
10(C15), 5 + 1

9(A15)].

Closer to impossible 5 or f = 12 (120-cell, S
3-tiling by F20)

means lower energy. Minimal f for simple (3, 4 tiles at each
edge, vertex) E

3-tiling by a simple polyhedron is 14 (tr.oct).
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Non-FK space fullerene: is it unique?
Deza-Shtogrin, 1999: unique known non-FK space
fullerene, 4-valent 3-periodic tiling of E3 by F20, F24

and its elongation F36(D6h) in ratio 7 : 2 : 1;
so, new record: mean face-size ≈ 5.091<5.1 (C15) and
f=13.2<13.29 (Rivier-Aste, 1996, conj. min.) <13.(3) (C15).

Delgado, O’Keeffe: all space fullerenes with ≤ 7 orbits of
vertices are 4 FK (A15, C15, Z, C14) and this one (3,3,5,7,7).

– p. 103/150



Weak Kelvin problem
Partition E

3 into equal volume cells D of minimal surface
area, i.e., with maximal IQ(D) = 36πV 2

A3 (lowest energy
foam). Kelvin conjecture (about congruent cells) is still out.

Lord Kelvin, 1887: bcc=A∗
3

IQ(curved tr.Oct.) ≈ 0.757
IQ(tr.Oct.)
≈ 0.753

Weaire-Phelan, 1994: A15

IQ(unit cell) ≈ 0.764
2 curved F20 and 6 F24

In E
2, the best is (Ferguson-Hales) graphite F∞ = (63).
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Projection of 120-cell in 3-space (G.Hart)

(533): 600 vertices, 120 dodecahedral facets, |Aut| = 14400
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Regular (convex) polytopes
A regular polytope is a polytope, whose symmetry group
acts transitively on its set of flags. The list consists of:

regular polytope group
regular polygon Pn I2(n)

Icosahedron and Dodecahedron H3

120-cell and 600-cell H4

24-cell F4

γn(hypercube) and βn(cross-polytope) Bn

αn(simplex) An=Sym(n + 1)

There are 3 regular tilings of Euclidean plane: 44 = δ2, 36
and 63, and an infinity of regular tilings pq of hyperbolic
plane. Here pq is shortened notation for (pq).
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2-dim. regular tilings and honeycombs
Columns and rows indicate vertex figures and facets , resp.
Blue are elliptic (spheric), red are parabolic (Euclidean).

2 3 4 5 6 7 m ∞
2 22 23 24 25 26 27 2m 2∞
3 32 α3 β3 Ico 36 37 3m 3∞
4 42 γ3 δ2 45 46 47 4m 4∞
5 52 Do 54 55 56 57 5m 5∞
6 62 63 64 65 66 67 6m 6∞
7 72 73 74 75 76 77 7m 7∞
m m2 m3 m4 m5 m6 m7 mm m∞
∞ ∞2 ∞3 ∞4 ∞5 ∞6 ∞7 ∞m ∞∞
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3-dim. regular tilings and honeycombs

α3 γ3 β3 Do Ico δ2 63 36

α3 α4∗ β4∗ 600- 336

β3 24- 344

γ3 γ4∗ δ3∗ 435* 436*

Ico 353

Do 120- 534 535 536

δ2 443* 444*

36 363

63 633* 634* 635* 636*
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4-dim. regular tilings and honeycombs

α4 γ4 β4 24- 120- 600- δ3

α4 α5∗ β5∗ 3335

β4 De(D4)

γ4 γ5∗ δ4∗ 4335∗
24- V o(D4) 3434

600-

120- 5333 5334 5335

δ3 4343∗
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Finite 4-fullerenes

χ = f0 − f1 + f2 − f3 = 0 for any finite closed 3-manifold,
no useful equivalent of Euler formula.

Prominent 4-fullerene: 120-cell.
Conjecture : it is unique equifacetted 4-fullerene
(≃ Do = F20)

Pasini: there is no 4-fullerene facetted with C60(Ih)
(4-football)

Few types of putative facets: ≃ F20, F24 (hexagonal
barrel), F26, F28(Td), F30(D5h) (elongated
Dodecahedron), F32(D3h), F36(D6h) (elongated F24)

∞: “greatest” polyhex is 633
(convex hull of vertices of 63, realized on a horosphere);
its fundamental domain is not compact but of finite volume
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4 constructions of finite 4-fullerenes

|V | 3-faces are ≃ to
120-cell∗ 600 F20 = Do

∀i ≥ 1 A∗
i 560i + 40 F20, F30(D5h)

∀3 − full.F B(F ) 30v(F ) F20, F24, F (two)
decoration C(120-cell) 20600 F20, F24, F28(Td)

decoration D(120-cell) 61600 F20, F26, F32(D3h)

∗ indicates that the construction creates a polytope;
otherwise, the obtained fullerene is a 3-sphere.
Ai: tube of 120-cells
B: coronas of any simple tiling of R

2 or H2

C, D: any 4-fullerene decorations
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Construction A of polytopal 4-fullerenes

Similarly, tubes of 120-cell’s are obtained in 4D
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Inflation method

Roughly: find out in simplicial d-polytope (a dual
d-fullerene F ∗) a suitable “large” (d − 1)-simplex,
containing an integer number t of “small” (fundamental)
simplices.

Constructions C, D: F ∗=600-cell; t = 20, 60, respectively.

The decoration of F ∗ comes by “barycentric homothety”
(suitable projection of the “large” simplex on the new
“small” one) as the orbit of new points under the
symmetry group
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All known 5-fullerenes

Exp 1: 5333 (regular tiling of H4 by 120-cell)

Exp 2 (with 6-gons also): glue two 5333’s on some
120-cells and delete their interiors. If it is done on only
one 120-cell, it is R × S3 (so, simply-connected)

Exp 3: (finite 5-fullerene): quotient of 5333 by its
symmetry group; it is a compact 4-manifold partitioned
into a finite number of 120-cells

Exp 3’: glue above

All known 5-fullerenes come as above

No polytopal 5-fullerene exist.
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Quotient d-fullerenes

A. Selberg (1960), A. Borel (1963): if a discrete group of
motions of a symmetric space has a compact fund. domain,
then it has a torsion-free normal subgroup of finite index.
So, quotient of a d-fullerene by such symmetry group is a
finite d-fullerene.
Exp 1: Poincaré dodecahedral space

quotient of 120-cell (on S3) by the binary icosahedral
group Ih of order 120; so, f -vector
(5, 10, 6, 1) = 1

120f(120 − cell)

It comes also from F20 = Do by gluing of its opposite
faces with 1

10 right-handed rotation

Quot. of H3 tiling: by F20: (1, 6, 6, p5, 1) Seifert-Weber space
and by F24: (24, 72, 48 + 8 = p5 + p6, 8) Löbell space

– p. 115/150



Polyhexes

Polyhexes on T 2, cylinder, its twist (Möbius surface) and K2

are quotients of graphite 63 by discontinuous and
fixed-point free group of isometries, generated by resp.:

2 translations,

a translation, a glide reflection

a translation and a glide reflection.

The smallest polyhex has p6 = 1: on T 2.
The “greatest” polyhex is 633
(the convex hull of vertices of 63, realized on a horosphere);
it is not compact (its fundamental domain is not compact),
but cofinite (i.e., of finite volume) infinite 4-fullerene.
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VI. Zigzags, railroads and

knots in fullerenes

(with Dutour and Fowler)
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Zigzags

A plane graph G
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Zigzags

take two edges
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Zigzags

Continue it left−right alternatively ....
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Zigzags

... until we come back.
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Zigzags

A self−intersecting zigzag
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Zigzags

A double covering of 18 edges: 10+10+16

z=10 ,  162z−vector 2,0
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z-knotted fullerenes

A zigzag in a 3-valent plane graph G is a circuit such
that any 2, but not 3 edges belong to the same face.

Zigzags can self-intersect in the same or opposite
direction.

Zigzags doubly cover edge-set of G.

A graph is z-knotted if there is unique zigzag.

What is proportion of z-knotted fullerenes among all Fn?
Schaeffer and Zinn-Justin, 2004, implies: for any m,
the proportion, among 3-valent n-vertex plane graphs
of those having ≤ m zigzags goes to 0 with n → ∞.

Conjecture : all z-knotted fullerenes are chiral and their
symmetries are all possible (among 28 groups for them)
pure rotation groups: C1, C2, C3, D3, D5.
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Railroads

A railroad in a 3-valent plane graph is a circuit of hexagonal
faces, such that any of them is adjacent to its neighbors on
opposite faces. Any railroad is bordered by two zigzags.

414(D3h) 442(C2v)

Railroads (as zigzags) can self-intersect (doubly or triply).
A 3-valent plane graph is tight if it has no railroad.
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Some special fullerenes

30, D5h

all 6-gons
in railroad
(unique)

36,D6h 38, C3v

all 5-, 6-
in rings
(unique)

48, D6d

all 5-gons
in alt. ring
(unique)

2nd one is the case t = 1 of infinite series F24+12t(D6d,h),
which are only ones with 5-gons organized in two 6-rings.

It forms, with F20 and F24, best known space fullerene tiling.

The skeleton of its dual is an isometric subgraph of 1
2H8.
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First IPR fullerene with self-int. railroad

F96(D6d); realizes projection of Conway knot (4 × 6)∗
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Triply intersecting railroad in F172(C3v)
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Tight fullerenes

Tight fullerene is one without railroads, i.e., pairs of
”parallel” zigzags.

Clearly, any z-knotted fullerene (unique zigzag) is tight.

F140(I) is tight with z = 2815 (15 simple zigzags).

Conjecture : any tight fullerene has ≤ 15 zigzags.

Conjecture : All tight with simple zigzags are 9 known
ones (holds for all Fn with n ≤ 200).
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Tight Fn with simple zigzags

20 Ih, 206 28 Td, 127 48 D3, 169

60 D3, 1810 60 Ih, 1810 76 D2d, 224, 207
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Tight Fn with simple zigzags

88 T , 2212 92 Th, 246, 226

140 I, 2815
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Tight Fn with only simple zigzags

n group z-vector orbit lengths int. vector

20 Ih 106 6 25

28 Td 127 3,4 26

48 D3 169 3,3,3 28

60, IPR Ih 1810 10 29

60 D3 1810 1,3,6 29

76 D2d 224, 207 1,2,4,4 4, 29 and 210

88, IPR T 2212 12 211

92 Th 226, 246 6,6 211 and 210, 4

140, IPR I 2815 15 214

Conjecture: this list is complete (checked for n ≤ 200).
It gives 7 Grünbaum arrangements of plane curves.
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Two F60 with z-vector 1810

C60(Ih) F60(D3)

This pair was first answer on a question in B.Grunbaum
"Convex Polytopes" (Wiley, New York, 1967) about
non-existance of simple polyhedra with the same p-vector
but different zigzags.
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z-uniform Fn with n ≤ 60
n isomer orbit lengths z-vector int. vector

20 Ih:1 6 106 25

28 Td:2 4,3 127 26

40 Td:40 4 304

0,3 83

44 T :73 3 443

0,4 182

44 D2:83 2 662

5,10 36

48 C2:84 2 722

7,9 40

48 D3:188 3,3,3 169 28

52 C3:237 3 523

2,4 202

52 T :437 3 523

0,8 182

56 C2:293 2 842

7,13 44

56 C2:349 2 842

5,13 48

56 C3:393 3 563

3,5 202

60 C2:1193 2 902

7,13 50

60 D2:1197 2 902

13,8 48

60 D3:1803 6,3,1 1810 29

60 Ih:1812 10 1810 29
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z-uniform IPR Cn with n ≤ 100

n isomer orbit lengths z-vector int. vector

80 Ih:7 12 2012 0, 210

84 Td:20 6 426

0,1 85

84 D2d:23 4,2 426

0,1 85

86 D3:19 3 863

1,10 322

88 T :34 12 2212 211

92 T :86 6 466

0,3 85

94 C3:110 3 943

2,13 322

100 C2:387 2 1502

13,22 80

100 D2:438 2 1502

15,20 80

100 D2:432 2 1502

17,16 84

100 D2:445 2 1502

17,16 84

IPR means the absence of adjacent pentagonal faces;
IPR enhanced stability of putative fullerene molecule.
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IPR z-knotted Fn with n ≤ 100

n signature isomers

86 43, 86∗ C2:2

90 47, 88 C1:7

53, 82 C2:19

71, 64 C2:6

94 47, 94∗ C1:60; C2:26, 126

65, 76 C2:121

69, 72 C2:7

96 49, 95 C1:65

53, 91 C1:7, 37, 63

98 49, 98∗ C2:191, 194, 196

63, 84 C1:49

75, 72 C1:29

77, 70 C1:5; C2:221

100 51, 99 C1:371, 377; C3:221

53, 97 C1:29, 113, 236

55, 95 C1:165

57, 93 C1:21

61, 89 C1:225

65, 85 C1:31, 234

The symbol ∗ above means that fullerene forms a Kékule
structure, i.e., edges of self-intersection of type I cover
exactly once the vertex-set of the fullerene graph (in other
words, they form a perfect matching of the graph).
All but one above have symmetry C1, C2.
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Perfect matching on fullerenes

Let G be a fullerene with one
zigzag with self-intersection numbers
(α1, α2). Here is the smallest one ,
F34(C2). →→

(i) α1 ≥ n
2

. If α1 = n
2

then
the edges of self-intersection of
type I form a perfect matching
PM

(ii) every face incident to 0 or 2

edges of PM

(iii) two faces, F1 and F2 are free of
PM , PM is organized around
them in concentric circles.

F2

F1
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z-knotted fullerenes: statistics forn ≤ 74

n # of Fn # of z-knotted

34 6 1

36 15 0

38 17 4

40 40 1

42 45 6

44 89 9

46 116 15

48 199 23

50 271 30

52 437 42

54 580 93

56 924 87

58 1205 186

60 1812 206

62 2385 341

64 3465 437

66 4478 567

68 6332 894

70 8149 1048

72 11190 1613

74 14246 1970

Proportion of z-knotted ones among all Fn looks stable.
For z-knotted among 3-valent ≤ n-vertex plane graphs, it is
34% if n = 24 (99% of them are C1) but goes to 0 if n → ∞.

– p. 133/150



Intersection of zigzags

For any n, there is a fullerene F36n−8 with two simple
zigzags having intersection 2n; above n = 4.
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VII. Ringed

fullerenes (with Grishukhin)
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All fullerenes with hexagons in1 ring

30, D5h 32, D2

32, D3d 36, D2d 40, D2
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All fullerenes with pentagons in1 ring

36, D2d 44, D3d

48, D6d 44, D2
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All fullerenes with hexagons in> 1 ring

32, D3h 38, C3v 40, D5h
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All fullerenes with pentagons in> 1 ring

38, C3v

infinite family:
4 triples in F4t,
t ≥ 10, from

collapsed 34t+8

infinite family:
F24+12t(D6d),

t ≥ 1,
D6h if t odd

elongations of
hexagonal barrel
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VIII. Face-regular

fullerenes
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Face-regular fullerenes

A fullerene called 5Ri if every 5-gon has i exactly 5-gonal
neighbors; it is called 6Ri if every 6-gon has exactly i
6-gonal neigbors.

i 0 1 2 3 4 5
# of 5Ri ∞ ∞ ∞ 2 1 1
# of 6Ri 4 2 8 5 7 1

28, D2 32, D3

All fullerenes, which are 6R1
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All fullerenes, which are 6R3

36, D2 44, T (also 5R2) 48, D3

52, T (also 5R1) 60, Ih (also 5R0)
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All fullerenes, which are 6R4

40, D5d 56, Td

(also 5R2)
68, D3d 68, Td

(also 5R1)

72, D2d 80, D5h (also 5R0) 80, Ih (also 5R0)
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IX. Embedding

of fullerenes
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Fullerenes as isom. subgraphs of12-cubes

All isometric embeddings of skeletons (with (5Ri, 6Rj) of
Fn), for Ih- or I-fullerenes or their duals, are:

F20(Ih)(5, 0) → 1
2H10 F ∗

20(Ih)(5, 0) → 1
2H6

F ∗
60(Ih)(0, 3) → 1

2H10 F80(Ih)(0, 4) → 1
2H22

(Shpectorov-Marcusani, 2007: all others isometric Fn

are 3 below (and number of isometric F ∗
n is finite):

F26(D3h)(−, 0) → 1
2H12

F40(Td)(2,−) → 1
2H15 F44(T )(2, 3) → 1

2H16

F ∗
28(Td)(3, 0) → 1

2H7 F ∗
36(D6h)(2,−) → 1

2H8

Also, for graphite lattice (infinite fullerene), it holds:
(63)=F∞(0, 6) → H∞, Z3 and (36)=F ∗

∞(0, 6) → 1
2H∞, 1

2Z3.
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Embeddable dual fullerenes in cells

The five above embeddable dual fullerenes F ∗
n correspond

exactly to five special (Katsura’s "most uniform") partitions
(53, 52.6, 5.62, 63) of n vertices of Fn into 4 types by 3
gonalities (5- and 6-gonal) faces incident to each vertex.

F ∗
20(Ih) → 1

2H6 corresponds to (20,−,−,−)

F ∗
28(Td) → 1

2H7 corresponds to (4, 24,−,−)

F ∗
36(D6h) → 1

2H8 corresponds to (−, 24, 12,−)

F ∗
60(Ih) → 1

2H10 corresponds to (−,−, 60,−)

F ∗
∞ → 1

2H∞ corresponds to (−,−,−,∞)

It turns out, that exactly above 5 fullerenes were identified
as clatrin coated vesicles of eukaryote cells (the vitrified cell
structures found during cryo-electronic microscopy).
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X. Parametrizing and

generation of fullerenes
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Parametrizing fullerenes

Idea: the hexagons are of zero curvature, it suffices to give
relative positions of faces of non-zero curvature.

Goldberg, 1937: all Fn of symmetry (I, Ih)
are given by Goldberg-Coxeter construction GCk,l.

Fowler and al., 1988: all Fn of symmetry D5, D6 or T
are described in terms of 4 integer parameters.

Graver, 1999: all Fn can be encoded by 20 integer
parameters.

Thurston, 1998: all Fn are parametrized by 10 complex
parameters.

Sah (1994) Thurston’s result implies that the number of
fullerenes Fn is ∼ n9.
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3-valent plane graph with |F |=3 or 6

4 triangles in Z[ω]
The corresponding trian-
gulation

Every such graph is
obtained this way.
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Generation of fullerenes

Consider a fixed symmetry group and fullerenes having
this group. In terms of complex parameters, we have

Group #param. Group # Group #

C1 10 D2 4 D6 2

C2 6 D3 3 T 2

C3 4 D5 2 I 1

For general fullerene (C1) the best is to use fullgen (up
to 180 vertices).

For 1 parameter this is actually the Goldberg-Coxeter
construction (up to 100000 vertices).

For intermediate symmetry group, one can go farther by
using the system of parameters (up to 1000 vertices).

– p. 150/150


	Polytopes and their faces
	Skeleton of polytope
	$4$-cube
	Euler formula
	Definition of fullerene
	Examples
	The range of fullerenes
	Finite isometry groups
	Finite isometry groups
	Finite isometry groups
	Point groups
	Small fullerenes
	A $C_{540}$
	What nature wants?
	Graver's superfullerenes
	Skyrmions and fullerenes
	Isoperimetric problem for polyhedra
	Isoperimetric problem for polyhedra
	 Classical isoperimetric inequality
	Five Platonic solids
	Goldberg Conjecture
	Icosahedral fullerenes
	Icosadeltahedra
	Icosadeltahedra in Architecture
	Geodesic Domes
	Icosadeltahedra $C_{n}^*$ with $a=2$
	$C_{60}(I_h)$
in leather
	The leapfrog of $C_{60}(I_h)$
	Triangulations, spherical wavelets
	Fullerenes in Chemistry
	Allotropes of carbon
	Allotropes of carbon: pictures
	Other allotropes of carbon
	Carbon and Anthropic Principle
	First non-preferable fullerene compound
	Terrones quasicrystalline cluster
	Onion-like metallic clusters
	Nanotubes and Nanotechnology
	Applications of nanotubes/fullerenes
	Nanotubes/fullerenes: hottest sci. topics
	Chemical context
	Stability of fullerenes
	Fullerene Kekule structure
	Life fractions
	Icosahedral viruses
	Capsids of icosahedral viruses
	Examples
	Viruses with (pseudo)
$T=3$
	Viruses with $T=4$
	More $T=a^2$ viruses
	Human and simian papilloma viruses
	Viruses with $T=13$
	Viruses with $T=25$
	More $I_h$-viruses 
	Special viruses 
	HIV conic fullerene 
	Mimivirus and other giants
	Viruses: big picture
	Useful fullerene-like $3$-valent maps
	Schwarzits
	$(6,7)$-surfaces
	$(6,8)$-surfaces
	More $(6,8)$-surfaces
	Polycycles
	Examples of $(p,3)$-polycycles
	Icosahedral fulleroids (with Delgado)
	Decoration operations producing $5$-gons
	$I$-fulleroids
	1st smallest icosahedral $(5,7)$-spheres
	2nd smallest icosahedral $(5,7)$-spheres
	The smallest icosahedral $(5,8)$-sphere
	The smallest icosahedral $(5,9)$-sphere
	The smallest icosahedral $(5,10)$-sphere
	The smallest icosahedral $(5,12)$-sphere
	The smallest icosahedral $(5,14)$-sphere
	The smallest icosahedral $(5,15)$-sphere
	$G$-fulleroids
	All seven $2$-isohedral $(5,n)$-planes
	$d$-fullerenes
	All finite $3$-fullerenes
	Smallest non-spherical finite $3$-fullerenes
	Non-spherical finite $3$-fullerenes
	Plane fullerenes (infinite $3$-fullerenes)
	Space fullerenes (infinite $4$-fullerene)
	24 known primary FK space fullerenes
	24 known primary FK space fullerenes
	FK space fullerene $A_{15}$ ($�eta $-$W$ phase)
	FK space fullerene $C_{15}$
	FK space fullerene $Z$
	Computer enumeration
	Conterexamples to $2$ old conjectures
	Frank-Kasper polyhedra and $A_{15}$
	Special space fullerenes $A_{15}$ and $C_{15}$
	Non-$FK$ space fullerene: is it unique?
	Weak Kelvin problem
	Projection of 120-cell in 3-space (G.Hart)
	Regular (convex)
polytopes
	$2$-dim. regular tilings and honeycombs
	$3$-dim. regular tilings and honeycombs
	$4$-dim. regular tilings and honeycombs
	Finite $4$-fullerenes
	$4$ constructions of finite 4-fullerenes
	Construction $A$ of polytopal $4$-fullerenes
	Inflation method
	All known $5$-fullerenes
	Quotient $d$-fullerenes
	Polyhexes
	Zigzags
	Zigzags
	Zigzags
	Zigzags
	Zigzags
	Zigzags

	$z$-knotted fullerenes
	Railroads
	Some special fullerenes
	First IPR fullerene with self-int. railroad
	Triply intersecting railroad in $F_{172}(C_{3v})$
	Tight fullerenes
	Tight $F_n$ with simple zigzags
	Tight $F_n$ with simple zigzags
	Tight $F_n$ with only simple zigzags
	Two $F_{60}$ with $z$-vector $18^{10}$
	$z$-uniform $F_n$ with $nleq 60$
	$z$-uniform 	extcolor {red}{IPR} $C_n$ with $nleq 100$
	IPR $z$-knotted $F_n$ with $nleq 100$
	Perfect matching on fullerenes
	$z$-knotted fullerenes: statistics for $nleq 74$
	Intersection of zigzags
	All fullerenes with hexagons in $1$ ring
	All fullerenes with pentagons in $1$ ring
	All fullerenes with hexagons in $>1$ ring
	All fullerenes with pentagons in $>1$ ring
	Face-regular fullerenes
	All fullerenes, which are $6R_3$
	All fullerenes, which are $6R_4$
	Fullerenes as isom. subgraphs of $�rac {1}{2}$-cubes
	Embeddable dual fullerenes in cells
	Parametrizing fullerenes
	$3$-valent plane graph with $|F|$=$3$ or $6$
	Generation of fullerenes

