A numerical method to solve higher-order fractional differential equations.

Authors
BookarXiv.org.
Year of edition2015

 In this paper, we present a new numerical method to solve fractional differential equations. Given a fractional derivative of arbitrary real order, we present an approximation formula for the fractional operator that involves integer-order derivatives only. With this, we can rewrite FDEs in terms of a classical one and then apply any known technique. With some examples, we show the accuracy of the method.

 This is a preprint of a paper whose final and definite form will be published in Mediterr. J. Math

Reference on publication
Almeida R.   A numerical method to solve higher-order fractional differential equations. - : , 2015. // arXiv.org, 2015.
Bibliography
1.Alikhanov, A. A.: Boundary value problems for the diffusion equation of the variable order in differential and difference settings. Appl. Math. Comput. 219(8), 3938-3946 (2012)
2.Atanackovi?c, T. M., Stankovic, B.: An expansion formula for fractional derivatives and its application. Fract. Calc. Appl. Anal. 7(3), 365--378 (2004)
3.Atanackovi?c, T. M., Stankovic, B.: On a numerical scheme for solving differential equationsof fractional order. Mech. Res. Comm. 35(7), 429--438 (2008)
4.Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Generalized fractional order Bloch equation with extended delay. Int. J. Bifurcation Chaos 22(4), 1250071, 15 pages (2012)
5.Butera, S., Paola, M. D.: Fractional differential equations solved by using Mellin transform. Commun. Nonlinear Sci. Numer. Simul. 19(7), 2220--2227 (2014)
6.Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Royal Astronom. Soc. 13(5), 529--539 (1967)
7.Chen, D., Sheng, H., Chen, Y., Xue, D.: Fractional-order variational optical flow model for motion estimation. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 371, 20120148--20120148 (2013)
8.Das, S., Gupta, P. K.: A mathematical model on fractional Lotka-Volterra equations. J. Theor. Biol. 277(1), 1--6 (2011)
9.Diethelm, K: The Analysis of Fractional Differential Equations. An ApplicationOriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, Volume 2004, Berlin (2010)
10.Ezzat, M. A., El-Karamany, A. S., El-Bary, A. A., Fayik, M. A.: Fractional calculus in one-dimensional isotropic thermo-viscoelasticity. C. R. Mec. 341(7), 553--566 (1013)
11.Galeone, L., Garrappa, R.: On Multistep Methods for Differential Equations of Fractional Order. Mediterr. J. Math. 3, 565--580 (2006)
12.Gulsu, M., Ozturk, Y., Anapali, A.: Numerical approach for solving fractional Fredholm integro-differential equation. Int. J. Comput. Math. 90(7), 1413--1434 (2013)
13.Henderson, J., Ouahab, A.: A Filippov's Theorem, Some Existence Results and the Compactness of Solution Sets of Impulsive Fractional Order Differential Inclusions. Mediterr. J. Math. 9(3), 453--485 (2011)
14.Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
15.Jafari, H., Khalique, C. M., Ramezani, M., Tajadodi, H.: Numerical solution of fractional differential equations by using fractional B-spline. Cent. Eur. J. Phys. 11(10), 1372--1376 (2013)
16.Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam (2006)
17.Leung, A. Y. T., Yang, H. X., Zhu, P., Guo, Z. J.: Steady state response of fractionally damped nonlinear viscoelastic arches by residue harmonic homotopy. Comput. Struct. 121, 10--21 (2013)
18.Li, C., Chen, A., Ye, J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230(9), 3352--3368 (2011)
19.Mueller, S., Kaestner, M., Brummund, J.,Ulbricht, V.: On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput. Mech. 51(6), 999--1012 (1013)
20.Nerantzaki, M. S., Babouskos, N. G.: Vibrations of inhomogeneous anisotropic viscoelastic bodies described with fractional derivative models. Eng. Anal. Bound. Elem. 36(12), 1894--1907 (2012)
21.Oldham, K. B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)
22.Pedas, A. Tamme, E.: Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput. Appl. Math. 255(1), 216--230 (2014)
23.Podlubny, I.: Fractional Differential Equations. Academic Press, Inc., San Diego, CA (1999)
24.Pooseh, S., Almeida, R., Torres, D. F. M.: Numerical approximations of fractional derivatives with applications. Asian J. Control 15(3), 698--712 (2013)
25.Sousa, E.: How to approximate the fractional derivative of order 1 < ? =< 2. Internat. J. Bifur. Chaos Appl. Sci. Engrg.22 (4), 1250075 (13 pages) (2012)
26.Stojanovic, M.: Wave Equation Driven by Fractional Generalized Stochastic Processes. Mediterr. J. Math. 10(4), 1813--1831 (2013)
27.Yan, Z., Jia, X.: Impulsive Problems for Fractional Partial Neutral Functional Integro-Differential Inclusions with Infinite Delay and Analytic Resolvent Operators. Mediterr. J. Math. 11(2), 393--428 (2013)

This publication on other resources

Webportal arXiv.org