Постоянная Капрекара

Постоянная Капрекара — число, равное .

Функция Капрекара

Число 6174 имеет следующую особенность. Выберем любое четырёхзначное число n, больше 1000, в котором не все цифры одинаковы (всюду предполагается использование десятичной системы счисления, если не оговорено иное). Расположим цифры сначала в порядке возрастания, затем в порядке убывания. Вычтем из большего меньшее. Производя перестановки цифр и вычитания, нули следует сохранять. Описанное действие назовём функцией Капрекара K(n). Повторяя этот процесс с получающимися разностями, не более чем за семь шагов получим число 6174, которое будет затем воспроизводить само себя. Это свойство числа 6174 было открыто в 1949 году индийским математиком Д. Р. Капрекаром, в честь которого оно и получило своё название.

Примеры

Для числа 3412: 4321 − 1234 = 3087 → 8730 − 378 = 8352 → 8532 − 2358 = 6174; Для числа 1100: 1100 − 11 = 1089 → 9810 − 189 = 9621 → 9621 − 1269 = 8352 → 8532 − 2358 = 6174.

Обобщения

Среди трёхзначных чисел аналогичным свойством обладает (процедура сходится к нему максимум через шесть итераций для любого трёхзначного числа без повторяющихся цифр). Для чисел с большим, чем 4, числом знаков, преобразование Капрекара в большинстве случаев рано или поздно приводит к циклическим повторениям чисел, но не к неподвижной точке n = K(n). Для пятизначных чисел неподвижной точки не существует. Имеется два шестизначных числа, являющихся неподвижными точками преобразования Капрекара ( и ), семизначных чисел с таким свойством нет. Любое число вида 633\ldots331766\ldots664 (где количество цифр в последовательностях шестёрок и троек одинаково) является неподвижной точкой n = K(n). Сама постоянная Капрекара тоже является числом этого вида. Однако не любая неподвижная точка может быть записана в таком виде.