Булева алгебра

Эта статья об алгебраической системе. О разделе математической логики, изучающем высказывания и операции над ними, см. Алгебра логики. Булевой алгеброй называется непустое множество A с двумя бинарными операциями (аналог конъюнкции), (аналог дизъюнкции), одной унарной операцией ¬ (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для всех a, b и c из множества A верны следующие аксиомы:
Эта булева алгебра наиболее часто используется в логике, так как является точной моделью классического исчисления высказываний. В этом случае 0 называют ложью, 1 — истиной. Выражения, содержащие булевы операции и переменные, представляют собой высказывательные формы.

  • Множество всех подмножеств данного множества S образует булеву алгебру относительно операций ∨ := ∪ (объединение), ∧ := ∩ (пересечение) и унарной операции дополнения. Наименьший элемент здесь — пустое множество, а наибольший — всё S.
  • Рассмотрим множество U всех натуральных делителей заданного натурального числа m, свободного от квадратов. Определим на U две бинарные операции: нахождение наибольшего общего делителя (аналог конъюнкции) и наименьшего общего кратного (аналог дизъюнкции); роль отрицания играет одноместная операция, сопоставляющая делителю d делитель m/d. Полученная структура является булевой алгеброй; в ней аналогами булевских нуля и единицы выступают соответственно числа 1 и m. Переложение приведенных выше общих аксиом и свойств булевой алгебры для множества U даёт ряд полезных и неочевидных теоретико-числовых тождеств.
  • Алгебра Линденбаума — Тарского (фактормножество всех утверждений по отношению равносильности в данном исчислении с соответствующими операциями) какого-либо исчисления высказываний является булевой алгеброй. В этом случае истинностная оценка формул исчисления является гомоморфизмом алгебры Линденбаума — Тарского в двухэлементную булеву алгебру.
  • Если R — произвольное кольцо, то на нём можно определить множество центральных идемпотентов так:\\ A = \{ eR : e² = e, ex = xe, ∀xR \},\\ тогда множество A будет булевой алгеброй с операциями ef := e + fef и ef := ef.

Принцип двойственности

В булевых алгебрах существуют двойственные утверждения, они либо одновременно верны, либо одновременно неверны. Именно, если в формуле, которая верна в некоторой булевой алгебре, поменять все конъюнкции на дизъюнкции, 0 на 1, ≤ на \textgreater и наоборот или \textless на ≥ и наоборот, то получится формула, также истинная в этой булевой алгебре. Это следует из симметричности аксиом относительно таких замен.

Представления булевых алгебр

Можно доказать, что любая конечная булева алгебра изоморфна булевой алгебре всех подмножеств какого-то множества. Отсюда следует, что количество элементов в любой конечной булевой алгебре будет степенью двойки. Теорема Стоуна утверждает, что любая булева алгебра изоморфна булевой алгебре всех открыто-замкнутых множеств какого-то компактного вполне несвязного хаусдорфова топологического пространства.

Аксиоматизация

В 1933 году американский математик предложил следующую аксиоматизацию для булевых алгебр:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Хантингтона: n(n(x) + y) + n(n(x) + n(y)) = x.
Здесь использованы обозначения Хантингтона: + означает дизъюнкцию, n — отрицание. Герберт Роббинс поставил следующий вопрос: можно ли сократить последнюю аксиому так, как написано ниже, то есть будет ли определённая выписанными ниже аксиомами структура булевой алгеброй? Аксиоматизация алгебры Роббинса:

  1. Аксиома коммутативности: x + y = y + x.
  2. Аксиома ассоциативности: (x + y) + z = x + (y + z).
  3. Уравнение Роббинса: n(n(x + y) + n(x + n(y))) = x.
Этот вопрос оставался открытым с 1930-х годов и был любимым вопросом Тарского и его учеников. В 1996 году Вильям МакКьюн, используя некоторые полученные до него результаты, дал утвердительный ответ на этот вопрос. Таким образом, любая алгебра Роббинса является булевой алгеброй.