Последовательность жонглёра

 В математике последовательность жонглёра - целочисленная последовательность, начинающаяся с натурального числа a0, в которой каждый следующий элемент определяется следующим рекуррентным соотношением:
ak+1={ak12,if ak is evenak32,if ak is odd

Общие сведения


 Последовательности жонглера были открыты американским математиком и автором . Например, последовательность жонглёра для a0 = 3:
a1=332=5,196=5,

a2=532=11,180=11,

a3=1132=36,482=36,

a4=3612=6=6,

a5=612=2,449=2,

a6=212=1,414=1.

 Если последовательность жонглёра достигает 1, то все её последующие значения равны 1. Предполагается, что все последовательности жонглёра, в конечном счете, достигают 1. Эта гипотеза была проверена для начальных значений (a0) до 106, но не доказана. Гипотеза жонглера, таким образом, представляет собой проблему, похожую на проблему Коллатца, о которой Пол Эрдёш сказал, что ``математика ещё не готова для таких задач''. Для заданного начального числа a0, l(a0) определяется как номер первого равного единице элемента, а h(a0) - как максимальное значение в этой последовательности. Для малых значений a0 получаем:
a0Последовательность жонглёраl(a0)h(a0)
22, 112
33, 5, 11, 36, 6, 2, 1636
44, 2, 124
55, 11, 36, 6, 2, 1536
66, 2, 126
77, 18, 4, 2, 1418
88, 2, 128
99, 27, 140, 11, 36, 6, 2, 17140
1010, 3, 5, 11, 36, 6, 2, 1736

 Элементы последовательности жонглёра могут достигать очень больших значений. Например, последовательность жонглёра, начинающаяся с a0 = 37, достигает максимального значения 24 906 114 455 136. Последовательность жонглёра для a0 = 48443 достигает максимального значения, которое содержит 972 463 цифры, в 60-м элементе, а 1 достигается на 157-м элементе последовательности.