Совершенный кубоид

Совершенный кубоид (или целочисленный кирпич) — прямоугольный параллелепипед, у которого все семь основных величин (три ребра, три лицевых диагонали и пространственная диагональ) являются целыми числами. Иначе говоря, совершенный кубоид — целочисленное решение системы диофантовых уравнений

a2+b2=d2
b2+c2=e2
a2+c2=f2
a2+b2+c2=g2
  До сих пор неизвестно, существует ли такой параллелепипед. Компьютерный перебор не нашёл ни одного целочисленного кирпича с рёбрами до 3·1012. Впрочем, найдено несколько «почти целочисленных» параллелепипедов, у которых целочисленными являются все величины, кроме одной:

  • (672,153,104) — одна из лицевых диагоналей нецелая.
  • (18720,211773121,7800), (520,576,618849) — одно из рёбер нецелое.
  • Большое количество эйлеровых параллелепипедов (с нецелой пространственной диагональю, см. ниже).
  • Косоугольные параллелепипеды, у которых все линейные размеры целые. При этом достаточно одного непрямого угла.

 С сентября 2017 года поиском совершенного кубоида начал заниматься проект распределённых вычислений yoyo@Home http://www.rechenkraft.net/yoyo/
Рациональный кубоид — это почти то же самое, что и совершенный кубоид, только рёбра, диагонали на гранях и пространственная диагональ у него не целые, а рациональные числа. Рациональный кубоид легко превращается в целочисленный путём умножения всех его линейных размеров на одно и то же целое число, поэтому нахождение рационального кубоида равносильно нахождению целочисленного кубоида.

Эйлеров параллелепипед


 Прямоугольный параллелепипед, у которого целочисленные только рёбра и лицевые диагонали, называется эйлеровым. Самый маленький из эйлеровых параллелепипедов — (240, 117, 44), с лицевыми диагоналями 267, 244 и 125. Ещё несколько эйлеровых параллелепипедов:

  • (275, 252, 240),
  • (693, 480, 140),
  • (720, 132, 85),
  • (792, 231, 160).

 Эйлер описал два семейства эйлеровых параллелепипедов (отсюда название). Впрочем, полного описания всех эйлеровых параллелепипедов также нет.
 Известны такие требования к эйлеровому параллелепипеду (а значит, и к целочисленному кирпичу):

  • Одно ребро делится на 4, второе делится на 16, третье нечётное (если, конечно, он примитивный — то есть, НОД(a, b, c)=1).
  • Одно ребро делится на 3 и ещё одно — на 9.
  • Одно ребро делится на 5.
  • Одно ребро делится на 11.