Центрированные шестиугольные числа

Центрированные шестиугольные числа – это центрированные фигурные числа, которые представляют шестиугольник с точкой в центре и все остальные окружающие точки находятся в шестиугольной решётке.
171937 - style=``color: red'' align=``center'' valign=``middle''+1+6+12+18
 - align=``center'' valign=``middle''

n-ое центрированное шестиугольное число задается формулой
n3(n1)3=3n(n1)+1.

 Представление формулы в виде
1+6(12n(n1))

 показывает, что центрированное шестиугольное число для n на 1 больше чем шестикратная величина (n−1)-го треугольного числа.
 Несколько первых центрированных шестиугольных чисел:

  1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919.
  Можно заметить, что по основанию 10 последний знак центрированных шестиугольных чисел имеют последовательность 1-7-9-7-1.
 Центрированные шестиугольные числа имеют практическое значение управлении логистики, например , в упаковке круглых предметов в больший круглый контейнер, таких как Венские сосиски в круглые банки, или упаковке проводов в кабель.
 Сумма первых n центрированных шестиугольных чисел равна n3. Таким образом, последовательности центрированных шестиугольных пирамидальных чисел и кубических чисел идентичны, но представляют различные (геометрические) формы. С другой стороны, центрированные шестиугольные числа – это разность двух соседних кубов, так что центрированные шестиугольные числа — это фигурное представление кубов. Также, простые центрированные шестиугольные числа есть кубические простые числа.
 Разность (2n)2 и n-го центрированного шестиугольного числа равна 3n2 + 3n − 1, а разность (2n − 1)2 и n-го центрированного шестиугольного числа есть прямоугольное число.