Проблема Гольдбаха

Проблема Гольдбаха (гипотеза Гольдбаха, проблема Эйлера, бинарная проблема Гольдбаха)  — утверждение о том, что любое чётное число, начиная с 4, можно представить в виде суммы двух простых чисел.
 Проблема Гольдбаха является известной открытой математической проблемой; в совокупности с гипотезой Римана включена под номером 8 в список проблем Гильберта (1900) и является одной из немногих проблем Гильберта, до сих пор остающихся нерешёнными по состоянию на 2010-е годы.
 Более слабый вариант гипотезы — тернарная проблема Гольдбаха, согласно которой любое нечётное число, начиная с 7, можно представить в виде суммы трёх простых чисел, была доказана в 2013 году перуанским математиком Харальдом Гельфготтом. Из справедливости утверждения бинарной проблемы Гольдбаха очевидным образом следует справедливость тернарной проблемы Гольдбаха: если каждое чётное число, начиная с 4, есть сумма двух простых чисел, то добавляя 3 к каждому чётному числу, можно получить все нечётные числа, начиная с 7.

История


 В 1742 году математик Кристиан Гольдбах послал письмо Леонарду Эйлеру, в котором он высказал следующее предположение: Эйлер заинтересовался проблемой и выдвинул более сильную гипотезу: Первое утверждение называется тернарной проблемой Гольдбаха, второе — бинарной проблемой Гольдбаха (или проблемой Эйлера).

Связанные результаты


 Результаты, связанные с проблемой Гольдбаха, были получены Львом Шнирельманом.

Тернарная проблема Гольдбаха


 В 1923 году математики Харди и Литлвуд показали, что в случае справедливости некоторого обобщения гипотезы Римана проблема Гольдбаха верна для всех достаточно больших нечётных чисел.
 В 1937 году Виноградов представил доказательство, не зависящее от справедливости гипотезы Римана, то есть доказал, что любое достаточно большое нечётное число может быть представлено в виде суммы трёх простых. Сам Виноградов не дал явной оценки для этого «достаточно большого числа», но его студент Константин Бороздин доказал, что нижняя граница не превышает 33\textsuperscript15 ≈ 3,25×106 846 168 ≈ 106 846 168. То есть это число содержит почти 7 миллионов цифр, что делает невозможной прямую проверку всех меньших чисел.
 В дальнейшем результат Виноградова многократно улучшали, пока в 1989 году Ван и Чэнь не опустили нижнюю грань до ee11,503 ≈ 3,33339×1043 000 ≈ 1043 000,5, что, тем не менее, по-прежнему было вне пределов досягаемости для явной проверки всех меньших чисел.
 В 1997 году Дезуйе, Эффингер, те Риле и Зиновьев показали, что обобщённая гипотеза Римана влечёт справедливость тернарной проблемы Гольдбаха. Они доказали её справедливость для чисел, превышающих 1020, в то время как справедливость утверждения для меньших чисел легко устанавливается на компьютере.
 В 2013 году тернарная гипотеза Гольдбаха была окончательно доказана Харальдом Гельфготтом\textgreaterGoldbach Variations // SciAm blogs, Evelyn Lamb, May 15, 2013.

Бинарная проблема Гольдбаха


 Бинарная проблема Гольдбаха всё ещё далека от решения.
 Виноградов в 1937 году и Теодор Эстерманн в 1938 году показали, что почти все чётные числа представимы в виде суммы двух простых чисел. Этот результат немного усилен в 1975 году и , они показали, что существуют положительные константы c и C такие, что количество чётных чисел, не больших N, непредставимых в виде суммы двух простых чисел, не превышает CN1c.
 В 1930 году Шнирельман доказал, что любое целое число представимо в виде суммы не более чем простых чисел. Этот результат многократно улучшался, так, в 1995 году Оливье Рамаре доказал, что любое чётное число — сумма не более чем 6 простых чисел. Из справедливости тернарной гипотезы Гольдбаха (доказанной в 2013 году) следует, что любое чётное число — сумма не более чем 4 простых чисел.
 В 1966 году Чэнь Цзинжунь доказал, что любое достаточно большое чётное число представимо или в виде суммы двух простых чисел, или же в виде суммы простого числа и полупростого (произведения двух простых чисел). Например, 100 = 23 + 7 · 11.
 На апрель 2012 года бинарная гипотеза Гольдбаха была проверена для всех чётных чисел, не превышающих 4×1018.
 Если бинарная гипотеза Гольдбаха неверна, то существует алгоритм, который рано или поздно обнаружит её нарушение.
 Бинарная гипотеза Гольдбаха может быть переформулирована как утверждение о неразрешимости диофантова уравнения 4-й степени некоторого специального вида.