Таблица простых множителей

 Таблица содержит факторизацию натуральных чисел от 1 до 1000.
 Если n - простое число (выделено жирным шрифтом ниже), то разложение состоит только из самого n.\\
 Число 1 не имеет простых делителей и не является ни простым, ни составным числом.
См. также: Таблица делителей (простые и составные делители чисел от 1 до 1000)

Свойства


 Многие свойства натурального числа n можно увидеть или непосредственно вычислить из факторизации n.

  • Степень m, в которой простое число p входит в факторизацию числа n - это наибольшее число, для которого ''n делится на pm''. Для простых чисел, не входящих в факторизацию, полагают эту степень равной 0.
  • Омега-функция (Ω(n)) - это сумма всех степеней, в которых простые числа входят в разложение n. Например, для 24 = 23 × 31, Ω(24) = 3 + 1 = 4.
  • Для простых чисел Ω(n) = 1. Первые: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 . There are many special types of prime numbers.
  • Составные числа имеют Ω(n) \textgreater 1. Первые: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21 . Все числа больше единицы простые или составные.
  • Полупростые числа имеют Ω(n) = 2 (т.е. они составные). Первые: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34 .
  • m - делитель n (также говорят, m делит n, или n кратно m), если все все простые числа входят в факторизацию m в степени, не большей чем степень, в которой они входят в факторизацию n.\\
  • Чётные числа имеют простой делитель 2. Первые: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 .
  • Нечётные числа, наоборот, не имеют простого делителя 2. Первые: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 . Все целые числа чётные или нечётные.
  • В факторизацию квадрата все простые делители входят в чётной степени. Первые: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 .
  • В факторизацию куба все простые делители входят в степени, делящейся на 3. Первые: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 .
  • В факторизацию полнократных чисел все простые делители входят в степени, большей единицы. The first: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72 .
  • Степени простых числа имеют только один простой делитель. Первые: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19 .
  • В факторизации бесквадратных чисел нет простых чисел в степени, большей 1. Первые: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17 ).
  • Функция Мёбиуса μ(n) равна 0, если n - не бесквадратное число. Иначе, μ(n) = 1, если Ω(n) чётно, и  μ(n) = −1, если Ω(n) нечётно.
  • Сфенические числа бесквадратны и имеют Ω(n) = 3, т.е. они являются произведениями трёх различных простых чисел. Первые: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154 .
  • Праймориал x\# - это произведение всех простых чисел от 2 до x. Первые: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 . 1\# = 1.
  • Факториал x! - это произведение всех целых чисел от 1 до x. Первые: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 . 0! = 1.
  • k-гладкие числа (для натурального k) имеют наибольший простой делитель ≤ k, т.е. это также  j-гладкие числа для любого j \textgreater k).
  • m более гладкое чем n, если наибольший простой делитель m меньше, чем наибольший простой делитель n.
  • У  нет простых делителей больше 5 (5-гладкие числа). Первые: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16 .
  • НОД(m, n) (наибольший общий делитель m и n) - это произведение всех простых чисел, которые входят в факторизацию как m, так и n (причём в степени, наименьшей из m и n).
  • m и n взаимнопросты, если НОД(m, n) = 1, т.е. у них нет общий простых делителей.
  • НОК(m, n) (наименьшее общее кратное  m и n) - это произведение всех простых делителей m или n (причём в степени, наибольшей из m и n).
  • НОК(m, n) × НОД(m, n) = m × n. Нахождение простых делителей часто сложнее, чем вычислять НОК и НОД алгоритмами, не требующими знание факторизации этих чисел.

1 - 100


98132·109
9822·491
983983
98423·3·41
9855·197
9862·17·29
9873·7·47
98822·13·19
98923·43
9902·32·5·11
991991
99225·31
9933·331
9942·7·71
9955·199
99622·3·83
997997
9982·499
99933·37
100023·53
\caption981 - 1000