Перебор делителей

Перебор делителей (пробное деление) — алгоритм факторизации или тестирования простоты числа путём полного перебора всех возможных потенциальных делителей.

Описание алгоритма


 Обычно перебор делителей заключается в переборе всех целых (как вариант: простых) чисел от 2 до квадратного корня из факторизуемого числа n и в вычислении остатка от деления n на каждое из этих чисел. Если остаток от деления на некоторое число i равен 0, то i является делителем n. В этом случае либо n объявляется составным, и алгоритм заканчивает работу (если тестируется простота n), либо n сокращается на i и процедура повторяется (если осуществляется факторизация n). По достижении квадратного корня из n и невозможности сократить n ни на одно из меньших чисел n объявляется простым.
 Для ускорения перебора часто не проверяются чётные делители, кроме числа 2, а также делители, кратные трём, кроме числа 3. При этом тест ускоряется в три раза, так как из каждых шести последовательных потенциальных делителей необходимо проверить только два, а именно вида 6·k±1, где k — натуральное число.

Скорость


 Худший случай, если перебор придется проводить от 2 до корня из n. Сложность данного алгоритма

O(n1/2)

Пример


 Для иллюстрации проведем перебор делителей числа n = 29. i — возможные делители n.
[n1/2]=5
in
21
31
43
54
61
70

 Так как остаток деления 7399 на 7 равен 0, то 7399 не является простым.

Практическое применение


 В практических задачах данный алгоритм применяется редко ввиду его большой вычислительной сложности, однако его применение оправдано в случае, если проверяемые числа относительно невелики, так как данный алгоритм довольно легко реализуем.