Нотация Конвея для многогранников

Нотация Конвея для многогранников, разработанная Конвеем и продвигаемая , используется для описания многогранников, опираясь на затравочный (т.е. используемый для создания других) многогранник, модифицируемый различными префикс-операциями. Конвей и Харт расширили идею использования операторов, подобных оператору truncation (усечения), определённого Кеплером, чтобы создавать связанные многогранники с той же симметрией. Базовые операторы могут сгенерировать все архимедовы тела и каталановы тела из правильных затравок. Например, tC представляет усечённый куб, а taC, полученный как t(aC), является усечённым октаэдром. Простейший оператор dual (двойственный) меняет местами вершины и грани. Так, двойственным многогранником для куба является октаэдр — dC=O. Применённые последовательно, эти операторы позволяют сгенерировать многие многогранники высокого порядка. Получающиеся многогранники будут иметь фиксированную топологию (вершины, рёбра, грани), в то время как точная геометрия не ограничивается. Затравочные многогранники, являющиеся правильными многогранниками, представляются первой буквой в их (английском) названии (Tetrahedron = тетраэдр, Octahedron = октаэдр, Cube = куб, Icosahedron = икосаэдр, Dodecahedron = додекаэдр). Кроме того, используются призмы (Pn – от prism для n-угольных призм), антипризмы (An – от Antiprisms), купола (Un – от cupolae), антикупола (Vn) и пирамиды (Yn – от pyramid). Любой многогранник может выступать в качестве затравки, если операции могут на них быть выполнены. Например, правильногранные многогранники можно обозначить как Jn (от Johnson solids = тела Джонсона) для n=1\ldots92. В общем случае трудно предсказать результат последовательного применения двух и более операций на заданный многогранник-затравку. Например, операция ambo, применённая дважды, оказывается той же самой, что и операция expand (расширения), aa=e, в то время как операция truncation (усечение) после операции ambo даёт то же, что и операция bevel, ta=b. Не существует общей теории, описывающей, какие многогранники могут быть получены с помощью некоторого набора операторов. Наоборот, все результаты были получены эмпирически.

Операции на многогранниках

Элементы таблицы даны для затравки с параметрами (v,e,f) (вершин, рёбер, граней), преобразуемой в новые виды в предположении, что затравка является выпуклым многогранником (топологической сферой с эйлеровой характеристикой 2). Пример, базирующийся на затравке в виде куба, дан для каждого оператора. Базовые операции достаточны для генерации зеркально симметричных однородных многогранников и их двойственных. Некоторые базовые операции можно выразить через композицию других операций. Специальные виды Операция «kis» имеет вариант, kn, в этом случае добавляются только пирамиды к граням с n-сторонами. Операция усечения имеет вариант, tn, в этом случае усекаются только вершины порядка n. Операторы применяются подобно функциям справа налево. Например, кубооктаэдр является ambo кубом (кубом, к которому применена операция ambo), то есть t(C) = aC, а усечённый кубооктаэдр равен t(a(C)) = t(aC) = taC. Оператор хиральности

  • r – «отражение» («reflect») – делает зеркальное отражение затравки. Оператор не меняет затравку, если к ней не были применены операторы s или g. Другой записью хиральной формы служит надчёркивание, например, = rs.
Операции в таблице показаны на примере куба и нарисованы на поверхности куба. Синие грани пересекают исходные рёбра, розовые грани соответствуют исходным вершинам.

Примеры многогранников по симметрии

Повторение операций, начав с простой формы, может дать многогранники с большим числом граней, сохраняющих симметрию затравки.

Тетраэдральная симметрия

Октаэдральная симметрия


Хиральные 

Изоэдральная симметрия


Хиральные 

Диэдральная симметрия

Тороидальная симметрия

Тороидальные мозаики существуют на плоском торе, на поверхности в четырёхмерном пространстве, но могут быть спроектированы в трёхмерное пространство как обычный тор. Эти мозаики топологически подобны подмножествам мозаик евклидовой плоскости.

Евклидова квадратная симметрия

Евклидова треугольная симметрия