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Some recent research topics:

I. Fullerenes: IQ and virus structure

II. Space fullerenes and metallic alloys

III. Railroads and zigzags in fullerenes

IV. Ambiguous boundaries of polycycles
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Recent books

Geometry of Cuts and Metrics (with M.Laurent), Springer,
1997.

Scale-Isometric Polytopal Graphs in Hypercubes and Cubic
Lattices (with V.Grishukhin and M.Shtogrin), Imperial
College Press and World Scientific, 2004.

Dictionary of Distances (with E.Deza), Elsevier, 2006.

Geometry of Chemical Graphs (with M.Dutour), Cambridge
University Press, 2008.

Encyclopedia of Distances (with E.Deza), Springer, 2009.
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I. Fullerenes: IQ and virus structure

A fullerene Fn is polyhedron with n 3-valent vertices and
only pentagonal and hexagonal faces. Clearly, p5 = 12
and p6 = n

2
− 10. Fn exist for all even n ≥ 20 but n = 22.

Fullerenes or their duals are ubiquitous in
Organic Chemistry and Biology (virus capsids, clathrine
coated vesicles). Also, energy minimizers in
Thomson problem (n unit charged particles on sphere)
and Skyrme problem (baryonic number n of nucleons),
while maximizers, in Tammes problem, of minimum
distance between n points on sphere.

Conjecture: among 3-valent polyhedra with given number
m ≥ 12 of faces, the “best” approximation of sphere are
are fullerenes; for instance, their Isoperimetric Quotient
IQ = 36π V

2

S3 is closest to the maximum (1 for sphere).
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Icosahedral fullerenes
Call icosahedral a fullerene of maximal symmetry Ih or I.

n=20T for T=a2+ab+b2 (triangulation number), 0≤b≤a.

I for 0 < b < a and Ih for a = b 6= 0 or b = 0.

Dodecahedron F20(Ih): smallest ((a, b)=(1, 0), T=1).

C60(Ih)=(1, 1)-dodecahedron
truncated icosahedron

C80(Ih)=(2, 0)-dodecahedron
chamfered dodecahedron

Cn(G): a fullerene Fn of symmetry G with isolated 5-gons.
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Icosadeltahedra

Icosadeltahedron C∗

20T
: dual of an icosahedral fullerene.

Geodesic domes: Fuller, patent 1954

Carbon C60(Ih): Kroto-Curl-Smalley, Nobel prize 1996

Capsids of viruses: Caspar and Klug, Nobel prize 1982:
virion capsomers are 10T + 2 vertices of C∗

20T
, since

capsomers organized quasi-equivalently: in minimal
number T of locations with non-equivalent bonding.
All virions, except some complex ones, are helical or
(≈ 1

2
of all and almost all human) icosahedral.
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Cowpea mosaic virus CPCM:T = 3

Plant comovirus infecting cowpea leafs; high yields 1-2 g/kg
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Icosadeltahedra withT = a2

a = 7, b = 0 a = 5, b = 0

(4, 0); HSV1 herpes
(5, 0); PRD1 polyo

Largest viruses observed (directly by EM) have T = 25.
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Capsids of icosahedral viruses

(a, b) T = a2 + ab + b2 Fullerene Examples of viruses

(1, 0) 1 F ∗

20
(Ih) B19 parvovirus, cowpea mosaic virus

(1, 1) 3 C∗

60
(Ih) picornavirus, turnip yellow mosaic virus

(2, 0) 4 C∗

80
(Ih) human hepatitis B, Semliki Forest virus

(2, 1) 7l C∗

140
(I)laevo HK97, rabbit papilloma virus, Λ-like viruses

(1, 2) 7d C∗

140
(I)dextro polyoma (human wart) virus, SV40

(3, 1) 13l C∗

260
(I)laevo rotavirus

(1, 3) 13d C∗

260
(I)dextro infectious bursal disease virus

(4, 0) 16 C∗

320
(Ih) herpes virus, varicella

(5, 0) 25 C∗

500
(Ih) adenovirus, phage PRD1

(3, 3) 27 C∗

540
(Ih) pseudomonas phage phiKZ

(6, 0) 36 C∗

720
(Ih) infectious canine hepatitis virus, HTLV1

(7, 7) 147 C∗

2940
(Ih) Chilo iridescent iridovirus (outer shell)

(7, 8) 169d C∗

3380
(I)dextro Algal chlorella virus PBCV1 (outer shell)

(7, 10) 219 C∗

4380
(I)dextro? Algal virus PpV01
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HIV conic fullerene; which Fn(G) it is?

Capsid core
7+5 pentagons Icosahedral shape (spikes): T ≃ 71?
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II. Space fullerenes and metallic alloys

Frank-Kasper polyhedra are all four fullerenes with isolated
hexagons: F20(Ih), F24(D6d), F26(D3h), F28(Td).

FK space fullerene: a 4-valent 3-periodic comb. E
3-tiling

by them; space fullerene: such tiling by any fullerenes.
They occur in clathrate hydrates, zeolites, soap froths and
tetrahedrally close-packed phases of metallic alloys.
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12 (of 24 known) FK space fullerenes

t.c.p. clathrate, exp. alloy sp. group f F20:F24:F26:F28 N

A15 type I, Cr3Si Pm3n 13.50 1, 3, 0, 0 8

C15 type II, MgCu2 Fd3m 13.(3) 2, 0, 0, 1 24

C14 type V, MgZn2 P63/mmc 13.(3) 2, 0, 0, 1 12

Z type III, Zr4Al3 P6/mmm 13.43 3, 2, 2, 0 7

σ ype IV, Cr46Fe54 P42/mnm 13.47 5, 8, 2, 0 30

H complex Cmmm 13.47 5, 8, 2, 0 30

K complex Pmmm 13.46 14, 21,6,0 82

F complex P6/mmm 13.46 9, 13, 4, 0 52

J complex Pmmm 13.45 4, 5, 2, 0 22

ν Mg32(Zn, Al)49 Immm 13.44 37, 40, 10, 6 186

δ MoNi P212121 13.43 6, 5, 2, 1 56

P Mo42Cr18Ni40 Pbnm 13.43 6, 5, 2, 1 56
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FK space fullereneA15

Gravicenters of cells F20 (atoms Si in Cr3Si) form the bcc
network A∗

3
. Unique with its fractional composition (1, 3, 0, 0).
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FK space fullerenesC15 and C14

C15: atoms Mg in alloy MgCu2 (gravicenters of cells F28)
form cubic diamond network.
C14: MgZn2, “ hexagonal diamond” (lonsdaleite) network.
C15, C14 belong to a continuum of structures with (2, 0, 0, 1)
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Computer enumeration

Dutour-Deza-Delgado, 2008: FK structures with ≤ 16 cells
(not congruent, with curved faces) in reduced fund. domain.

# 20 # 24 # 26 # 28 fraction N(structure)

1 3 0 0 known 8(A15)

2 0 0 1 known 6,12(C14),24(C15)

3 2 2 0 known 7(Z),14,28,28

3 3 2 0 conterexample 32

3 3 0 1 new 14,28,28

3 4 2 0 conterexample 18

4 5 2 0 known 22(cf. J complex)

5 2 2 1 new 20

5 8 2 0 known 15(cf. H complex),30(σ)

6 5 2 1 known 14,28,28,28,56,56(δ)

7 2 2 2 known 13,13,26,26(K7Cs6),26 (pσ)

7 4 2 2 conterexample 60

9 2 2 4 new 32
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Non-FK space fullerene: is it unique?
Deza-Shtogrin, 1999: unique known non-FK space
fullerene, 4-valent 3-periodic tiling of E

3 by F20, F24 and its
elongation F36(D6h) in ratio 7 : 2 : 1. So, new records: mean
face-size ≈ 5.091<5.1 (C15). Closer to impossible 5 (120-cell
on 3-sphere) means energetically competitive with diamond.

Delgado, O’Keeffe, 2007: all space fullerenes with ≤ 7
vertex-orbits are A15, C15, Z, C14 and this one (3,3,5,7,7). – p. 15/24



Kelvin problem

Partition E
3 into equal cells D of minimal surface area, i.e.,

with maximal Isoperimetric Quotient IQ(D) = 36πV
2

A3 .

Lord Kelvin, 1887: bcc=A∗

3

IQ(curved tr.Oct.) ≈ 0.757
IQ(tr.Oct.) ≈ 0.753

Weaire-Phelan, 1994: A15

IQ(unit cell) ≈ 0.764
2 curved F20 and 6 F24

In E
2, the best is (Ferguson, Hales) graphite F∞ = (63).
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III. Railroads and zigzags in fullerenes

A railroad in a fullerene is a circuit of hexagons which are
adjacent to two their neighbors on opposite faces.
Any railroad is bordered by two zigzags (left-right circuits).

30, D5h

all 6-gons
in railroad
(unique)

36,D6h all
5-gons

in 2 rings

38, C3v

all 5-, 6-
in rings
(unique)

48, D6d

all 5-gons
in alt. ring
(unique)
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First IPR fullerene with self-int. railroad

Above F96(D6d) is IPR (its pentagons are isolated);
it realizes projection of Conway knot (4 × 6)∗
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Fullerene with triply intersecting railroad

Conjecture: above F176(C3v) is smallest such fullerene
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Tight fullerenes

Tight fullerene is one without railroads.

F140(I) (below) is tight and has 15 zigzags, all simple.
Conjecture: any tight fullerene has ≤ 15 zigzags.

Conjecture: all tight fullerenes with simple (i.e., not
self-intersecting) zigzags are 9 given below.

88 T , 2212 92 Th, 246, 226

140 I, 2815
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Other 6 tight Fn with simple zigzags

20 Ih, 206 28 Td, 127 48 D3, 169

60 D3, 1810 60 Ih, 1810 76 D2d, 224, 207
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IV. Ambiguous polycycle boundaries

A n-polycycle is a plane 2-connected finite graph with:

all interior faces are (combinatorial) n-gons,

all interior vertices are of degree 3,

all boundary vertices are of degree 2 or 3.

For example, 5-polycycles below have 1, 5 interior vertices
and 5, 10 interior faces (pentagons, not necessarily regular).
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What boundary says about its filling(s?)

The boundary of a n-polycycle defines it if n = 3, 4.

Also, the boundary of a 6-polycycle defines it if it is of
lattice type, i.e., its skeleton is a partial subgraph of the
skeleton of the partition {63} of the plane into hexagons.

Conjecture: any n-polycycle with at most 4n n-gons is
uniquely defined by its boundary. It holds for n ≤ 6.
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2 equi-boundary 6-polycycles

Boundary sequence: 40, 34 vertices of degree 2, 3, resp.
Symmetry groups: of boundary: C2v, of polycycles: C2.

Fillings: 24 hexagons, 12 interior vertices.
It is unique ambiguous boundary of a 5-polycycle filled by

at most 24 = 4×6 hexagons.
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