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-
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|. Fullerenes: 1() and virus structure

-

# A fullerene F,, is polyhedron with n 3-valent vertices and

=

only pentagonal and hexagonal faces. Clearly, p5 = 12
and pg = 5 — 10. F}, exist for all even n > 20 but n = 22.

Fullerenes or their duals are ubiquitous In

Organic Chemistry and Biology (virus capsids, clathrine
coated vesicles). Also, energy minimizers in

Thomson problem (n unit charged particles on sphere)
and Skyrme problem (baryonic number n of nucleons),
while maximizers, in Tammes problem, of minimum
distance between n points on sphere.

Conjecture: among 3-valent polyhedra with given number
m > 12 of faces, the “best” approximation of sphere are
are fullerenes; for instance, their Isoperimetric Quotient

IQ = 367T‘§—§ IS closest to the maximum (1 for sphere). J
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lcosahedral fullerenes

all icosahedral a fullerene of maximal symmetry I, or 1.
® n=20T for T=a?+ab+b? (triangulation number), 0<b<a.
® /forO<b<aand,fora=b+#0o0rb=0.

# Dodecahedron Fyy(I;): smallest ((a,b)=(1,0), T=1).

Cso(I,)=(1,1)-dodecahedron Cgy(1})=(2,0)-dodecahedron
truncated icosahedron chamfered dodecahedron

LCn(G): a fullerene F;,, of symmetry G with isolated 5-gons. J
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lcosadeltahedra

-

Icosadeltahedron C3,,: dual of an icosahedral fullerene.

=

#® Geodesic domes: Fuller, patent 1954
o Carbon Cgo(1y): Kroto-Curl-Smalley, Nobel prize 1996

# Capsids of viruses: Caspar and Klug, Nobel prize 1982:
virion capsomers are 107" + 2 vertices of (5, since
capsomers organized quasi-equivalently: in minimal
number 7' of locations with non-equivalent bonding.

All virions, except some complex ones, are helical or

(~ 3 of all and almost all human) icosahedral.
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Cowpea mosaic virus CPCM: T = 3

-

-

Plant comovirus infecting cowpea leafs; high yields 1-2 g/kg
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Cso(Ip), (a,b) = (1,1),T =3
L pentakis-dodecahedron J




lcosadeltahedra withT = a2

PRD1 polyo

)

(5,0

(4,0); HSV1 herpes
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Capsids of icosahedral viruses

(a,b) | T = a? + ab + b? Fullerene Examples of viruses

(1,0) 1 F3o(In) B19 parvovirus, cowpea mosaic virus
(1,1) 3 CéoIn) picornavirus, turnip yellow mosaic virus
(2,0) 4 Cgo(In) human hepatitis B, Semliki Forest virus
(2,1) 71 CTi0)igevo HK97, rabbit papilloma virus, A-like viruses
(1,2) 7d CTi0)dextro polyoma (human wart) virus, SV40
(3,1) 131 C60)1aevo rotavirus

(1,3) 13d Cs0 ) dextro infectious bursal disease virus
(4,0) 16 C350Un) herpes virus, varicella

(5,0) 25 CooUn) adenovirus, phage PRD1

(3,3) 27 CtioIn) pseudomonas phage phikZ

(6,0) 36 CZo0(In) infectious canine hepatitis virus, HTLV1
(7,7) 147 C910Un) Chilo iridescent iridovirus (outer shell)
(7,8) 169d C3350 ) dextro Algal chlorella virus PBCV1 (outer shell)
(7,10) 219 Clrsso)dextro? Algal virus PpV01
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HIV conic fullerene; which F,(G) itis?

-

Vif, Vpr, Nef and p7

gp120

Docking
Glycoprotein

Protease

Lipid
Membrane

Reverse
Transcriptase {{ /

Viral RNA

Capsid core fename
L 7+5 pentagons lcosahedral shape (spikes): T ~ 717 J
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ll. Space fullerenes and metallic alloys

fFrank-Kasper polyhedra are all four fullerenes with isolated T
hexagons: Foo(In), F2a(Dsa), Fa6(Dsn), Fas(1u).

FK space fullerene: a 4-valent 3-periodic comb. E3-tiling
by them; space fullerene: such tiling by any fullerenes.
They occur in clathrate hydrates, zeolites, soap froths and
tetrahedrally close-packed phases of metallic alloys.




12 (of 24 known) FK space fullerenes
. o

t.c.p. | clathrate, exp. alloy | sp. group f Foo:Foy FogiFas | N
Ais typel, Cr3Si Pm3n 13.50 1,3,0,0 8
C1s type ll, MgCus Fd3m 13.(3) 2,0,0,1 24
Ci4 typeV, MgZns P63 /mmc | 13.(3) 2,0,0,1 12
7 type lll, ZriAls P6/mmm | 13.43 3,2,2,0 7
% ype IV, CrysFesy | Pdo/mnm | 13.47 5 8,2,0 30
H complex C'mmm 13.47 58,2,0 30
K complex Pmmm 13.46 14, 21,6,0 82
F complex P6/mmm | 13.46 9,13,4,0 52
J complex Pmmm 13.45 4 5 2,0 22
v M gso(Zn, Al)4g Immm 13.44 37,40, 10, 6 186
L 0 MoN1 P2:2,2¢ 13.43 6,5,2,1 o6 J
P Mo42Cr18Nigg Pbnm 13.43 6,5,2,1 56_11/2




FK space fullereneA;;

-

Gravicenters of cells F5y (atoms Si in CrgSi) form the bcc
network A3. Unique with its fractional composition (1, 3,0, 0).

=




FK space fullerenesC;; and C'4

-

C'15. atoms Mg in alloy M gCus (gravicenters of cells Fag)
form cubic diamond network.

Ch4:. MgZno, “ hexagonal diamond” (lonsdaleite) network.
C15, C14 belong to a continuum of structures with (2,0,0, 1)

-
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Computer enumeration

utour-Deza-Delgado, 2008: FK structures with < 16 cells
(not congruent, with curved faces) in reduced fund. domain.

#20 | #24 | #26 | #28 fraction N(structure)

1 3 0 0 known 8(A15)

2 0 0 1 known 6,12(C14),24(C15)

3 2 2 0 known 7(2),14,28,28

3 3 2 0 conterexample 32

3 3 0 1 new 14,28,28

3 4 2 0 conterexample 18

4 5 2 0 known 22(cf. J complex)

5 2 2 1 new 20

5 8 2 0 known 15(cf. H complex),30(o)

6 5 2 1 known 14,28,28,28,56,56(9)

7 2 2 2 known 13,13,26,26(K7C'sg),26 (po)
L 7 4 2 2 conterexample 60

9 2 2 4 new 32

=
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Non-FK space fullerene: Is it unigue?

fDeza—Shtogrin, 1999: unique known non-FK space T
fullerene, 4-valent 3-periodic tiling of E3 by Fyg, Fos and its
elongation Fs5(Dgp) Inratio 7 : 2 : 1. S0, new records: mean
face-size ~ 5.091<5.1 (C5). Closer to impossible 5 (120-cell
on 3-sphere) means energetically competitive with diamond.

LDeIgado, O’Keeffe, 2007: all space fullerenes with < 7 J
vertex-orbits are A5, Ci5, Z, C14 and this one (3,3,5,7,7). ..



Kelvin problem

Partition E° into equal cells D of minimal surface area, i.e.,
with maximal Isoperimetric Quotient IQ(D) = 36;{—3‘/2.

Lord Kelvin, 1887: bcc=A; Weaire-Phelan, 1994: A;;

IQ(curved tr.Oct.) ~ 0.757 1Q(unit cell) ~ 0.764
L| 1Q(tr.Oct.) ~ 0.753 2 curved Fyy and 6 Foy J
n E2, the best is (Ferguson, Hales) graphite £, = (6%).
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Ill. Rallroads and zigzags in fullerenes

N .

A railroad in a fullerene is a circuit of hexagons which are
adjacent to two their neighbors on opposite faces.
Any railroad is bordered by two zigzags (left-right circuits).

o eP o

30, Dsy, 36, Dg, all 38, U3, 48, Dgg
all 6-gons 5-gons all 5-, 6- all 5-gons
In railroad INn 2 rings IN rings In alt. ring

(unique) (unique) (unique)

o -



First IPR fullerene with self-int. railroad

L Above Fys(Dgg) IS IPR (its pentagons are isolated);
it realizes projection of Conway knot (4 x 6)*



Fullerene with triply intersecting railroad

- .

LConjecture: above Fi74(Cs,) IS smallest such fullerene J



Tight fullerenes

°

Tight fullerene is one without railroads.

® Fiy(1) (below) is tight and has 15 zigzags, all simple.

Conjecture: any tight fullerene has < 15 zigzags.

® Conjecture: all tight fullerenes with simple (i.e., not
self-intersecting) zigzags are 9 given below.

88 T, 2212

L 140 I, 2815




Other 6 tight F,, with simple zigzags

D

20 I, 20° 28 Ty, 127 48 Ds, 16?

60 Dj, 18 60 Iy, 180 76 Doy, 224,207



V. Ambiguous polycycle boundaries
A o

# all interior faces are (combinatorial) n-gons,

n-polycycle is a plane 2-connected finite graph with:

# all interior vertices are of degree 3,

# all boundary vertices are of degree 2 or 3.

For example, 5-polycycles below have 1,5 interior vertices
and 5, 10 interior faces (pentagons, not necessarily regular).
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What boundary says about its filling(s?)
f.’ The boundary of a n-polycycle defines it if n = 3, 4. T

# Also, the boundary of a 6-polycycle defines it if it is of
lattice type, I.e., its skeleton is a partial subgraph of the

skeleton of the partition {63} of the plane into hexagons.

® Conjecture. any n-polycycle with at most 4n n-gons is
uniquely defined by its boundary. It holds for n < 6.

o -



2 equi-boundary 6-polycycles
B o

Boundary sequence: 40, 34 vertices of degree 2, 3, resp.
Symmetry groups: of boundary: Cs,, of polycycles: Cs.
Fillings: 24 hexagons, 12 interior vertices.

It is unigue ambiguous boundary of a 5-polycycle filled by
L at most 24 = 4x6 hexagons. J
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